find the number of triangles that can be formed using 14 points in aplane such that 4 points are colliner About the author Peyton
[tex]\large\underline{\sf{Solution-}}[/tex] We know, ★ If there are n non collinear points in the plane, then number of triangles formed is given by [tex]\rm :\longmapsto\:Number \: of \: triangles = \: ^nC_3[/tex] and we know, [tex]\rm :\longmapsto\:^nC_r \: = \: \dfrac{n!}{r!(n-r)!} [/tex] Now, ★ It is given that, 14 points in a plane out of which 4 points are collinear. ★ Number of triangles formed by joining 14 points taken 3 at a time is [tex]\rm :\longmapsto\:Number \: of \: triangles = \: ^{14}C_3[/tex] [tex] \rm \: \: = \: \dfrac{14!}{3!(14 – 3)!} [/tex] [tex] \rm \: \: = \: \dfrac{14!}{3! \: \: 11!} [/tex] [tex] \rm \: \: = \: \dfrac{14 \times 13 \times 12 \times 11!}{3 \times 2 \times 1\: \: 11!} [/tex] [tex] \rm \: \: = \: 28 \times 13[/tex] [tex] \rm \: \: = \: 364[/tex] Now, ★ Number of triangles formed by joining 4 points taken 3 at a time is [tex]\rm :\longmapsto\:Number \: of \: triangles = \: ^{4}C_3[/tex] [tex] \rm \: \: = \: \dfrac{4!}{3!(4 – 3)!} [/tex] [tex] \rm \: \: = \: \dfrac{4 \times 3!}{3! \: \: 1!} [/tex] [tex] \rm \: \: = \: 4[/tex] ★ But 4 points are collinear which don’t form a triangle when taken 3 at a time. So, ★ Required number of triangles = 364 – 4 = 360. _____________________________________ Additional Information :- [tex]\rm :\longmapsto\:^nC_r \: = \: \dfrac{n}{r} \: ^{n – 1}C_{r – 1}[/tex] [tex]\rm :\longmapsto\:^nC_0 = ^nC_n = 1[/tex] [tex]\rm :\longmapsto\:^nC_1 = ^nC_{n – 1} = n[/tex] [tex]\rm :\longmapsto\:^nC_r \: + \: ^nC_{r – 1} \: = \: ^{n + 1}C_r[/tex] [tex]\rm :\longmapsto\:\dfrac{^nC_r}{^nC_{r – 1}} = \dfrac{n – r + 1}{r} [/tex] Reply
[tex]\large\underline{\sf{Solution-}}[/tex]
We know,
★ If there are n non collinear points in the plane, then number of triangles formed is given by
[tex]\rm :\longmapsto\:Number \: of \: triangles = \: ^nC_3[/tex]
and we know,
[tex]\rm :\longmapsto\:^nC_r \: = \: \dfrac{n!}{r!(n-r)!} [/tex]
Now,
★ It is given that, 14 points in a plane out of which 4 points are collinear.
★ Number of triangles formed by joining 14 points taken 3 at a time is
[tex]\rm :\longmapsto\:Number \: of \: triangles = \: ^{14}C_3[/tex]
[tex] \rm \: \: = \: \dfrac{14!}{3!(14 – 3)!} [/tex]
[tex] \rm \: \: = \: \dfrac{14!}{3! \: \: 11!} [/tex]
[tex] \rm \: \: = \: \dfrac{14 \times 13 \times 12 \times 11!}{3 \times 2 \times 1\: \: 11!} [/tex]
[tex] \rm \: \: = \: 28 \times 13[/tex]
[tex] \rm \: \: = \: 364[/tex]
Now,
★ Number of triangles formed by joining 4 points taken 3 at a time is
[tex]\rm :\longmapsto\:Number \: of \: triangles = \: ^{4}C_3[/tex]
[tex] \rm \: \: = \: \dfrac{4!}{3!(4 – 3)!} [/tex]
[tex] \rm \: \: = \: \dfrac{4 \times 3!}{3! \: \: 1!} [/tex]
[tex] \rm \: \: = \: 4[/tex]
★ But 4 points are collinear which don’t form a triangle when taken 3 at a time.
So,
★ Required number of triangles = 364 – 4 = 360.
_____________________________________
Additional Information :-
[tex]\rm :\longmapsto\:^nC_r \: = \: \dfrac{n}{r} \: ^{n – 1}C_{r – 1}[/tex]
[tex]\rm :\longmapsto\:^nC_0 = ^nC_n = 1[/tex]
[tex]\rm :\longmapsto\:^nC_1 = ^nC_{n – 1} = n[/tex]
[tex]\rm :\longmapsto\:^nC_r \: + \: ^nC_{r – 1} \: = \: ^{n + 1}C_r[/tex]
[tex]\rm :\longmapsto\:\dfrac{^nC_r}{^nC_{r – 1}} = \dfrac{n – r + 1}{r} [/tex]