Find the quadratic polynomial, the sum of whose zeros is 0 and their product is -1. Hence, find the zeros of the polynomial.

Find the quadratic polynomial, the sum of whose zeros is 0 and their product is -1. Hence, find the zeros of the polynomial.

About the author
Elliana

2 thoughts on “Find the quadratic polynomial, the sum of whose zeros is 0 and their product is -1. Hence, find the zeros of the polynomial.”

  1. [tex]\bold AnswEr:-[/tex]

    Quadratic polynomial = x² – 1

    Zeroes of polynomial = -1 & 1

    [tex]\rule{200}{1}[/tex]

    Explanation:-

    Let the zeroes of polynomial be α & β

    Given:-

    • α + β = 0
    • αβ = -1
    • We know the standard form of a quadratic polynomial:-

    [tex]\star\: \boxed{\boxed{\sf\blue{x^2 – (Sum \: of \: zeros)x + Product\: of\: zeros }}}[/tex]

    Here,

    ⇒ Polynomial = x² – (0)x + (-1)

    ⇒ Polynomial = x² – 0x – 1

    ⇒ Polynomial = x² – 1

    Therefore,

    [tex]\therefore\underline{\textsf{Quadratic polynomial = {\textbf{x$^2$- 1}}}}[/tex]

    [tex]\rule{200}{1}[/tex]

    • We got the quadratic polynomial as x² – 1
    • Now we can find the zeros of polynomial by factorization method:-

    ⇒ x² – 1 = 0

    [We know, a² – b² = (a + b)(a – b) ]

    ⇒ (x + 1)(x – 1) = 0

    ⇒ x = -1 or x = 1

    Therefore,

    [tex]\therefore\underline{\textsf{Zeros of polynomial = {\textbf{-1 \& 1 }}}}[/tex]

    Reply
  2. Step-by-step explanation:

    __________________

    [tex] \maltese \: \large \underline{ \bf{Answer:-}}[/tex]

    Given :

    [tex] \bold {• \: \: \: S um \:of \: \: zeroes \: \: of \: \: a \: \: quadratic \: \: polynomial \: \: ( \alpha + \beta ) = 0 }[/tex]

    [tex] \bold {• \: \: \:product \: \:of \: \: zeroes \: \: of \: \: a \: \: quadratic \: \: polynomial \: \: ( \alpha \beta ) = – 1 }[/tex]

    To Find :

    • Zeroes of the polynomials

    Solution :

    General form for quadratic equations,

    [tex] {\bf{ \boxed{ {x}^{2} – ( \alpha + \beta )x + \alpha \beta }}}[/tex]

    we have that ,

    [tex] \alpha + \beta = 0[/tex]

    [tex] \alpha \beta = – 1[/tex]

    Substitute the values in the form ,

    [tex] \bf \implies \: {x}^{2} – (0)x -1[/tex]

    [tex] \implies \bf \: {x}^{2} – 1[/tex]

    Next , find the zeroes of the polynomial.

    It is in the form (b²)

    ° (b²) = (a+b)(a-b)

    [tex] \implies \sf \: {x}^{2} – {1}^{2}[/tex]

    [tex] \implies \sf \:(x + 1)(x – 1) = 0 [/tex]

    [tex]\implies \sf \:x = – 1 \: \: and \: \: 1[/tex]

    ° Zeroes of the polynomial is ±1 !!

    _______________________

    Reply

Leave a Comment