Find the quadratic polynomial, the sum of whose zeros is 0 and their product is -1. Hence, find the zeros of the polynomial. About the author Elliana
[tex]\bold AnswEr:-[/tex] Quadratic polynomial = x² – 1 Zeroes of polynomial = -1 & 1 [tex]\rule{200}{1}[/tex] Explanation:- Let the zeroes of polynomial be α & β Given:- α + β = 0 αβ = -1 We know the standard form of a quadratic polynomial:- [tex]\star\: \boxed{\boxed{\sf\blue{x^2 – (Sum \: of \: zeros)x + Product\: of\: zeros }}}[/tex] Here, ⇒ Polynomial = x² – (0)x + (-1) ⇒ Polynomial = x² – 0x – 1 ⇒ Polynomial = x² – 1 Therefore, [tex]\therefore\underline{\textsf{Quadratic polynomial = {\textbf{x$^2$- 1}}}}[/tex] [tex]\rule{200}{1}[/tex] We got the quadratic polynomial as x² – 1 Now we can find the zeros of polynomial by factorization method:- ⇒ x² – 1 = 0 [We know, a² – b² = (a + b)(a – b) ] ⇒ (x + 1)(x – 1) = 0 ⇒ x = -1 or x = 1 Therefore, [tex]\therefore\underline{\textsf{Zeros of polynomial = {\textbf{-1 \& 1 }}}}[/tex] Reply
Step-by-step explanation: __________________ [tex] \maltese \: \large \underline{ \bf{Answer:-}}[/tex] Given : [tex] \bold {• \: \: \: S um \:of \: \: zeroes \: \: of \: \: a \: \: quadratic \: \: polynomial \: \: ( \alpha + \beta ) = 0 }[/tex] [tex] \bold {• \: \: \:product \: \:of \: \: zeroes \: \: of \: \: a \: \: quadratic \: \: polynomial \: \: ( \alpha \beta ) = – 1 }[/tex] To Find : Zeroes of the polynomials Solution : General form for quadratic equations, [tex] {\bf{ \boxed{ {x}^{2} – ( \alpha + \beta )x + \alpha \beta }}}[/tex] we have that , [tex] \alpha + \beta = 0[/tex] [tex] \alpha \beta = – 1[/tex] Substitute the values in the form , [tex] \bf \implies \: {x}^{2} – (0)x -1[/tex] [tex] \implies \bf \: {x}^{2} – 1[/tex] Next , find the zeroes of the polynomial. It is in the form (a²–b²) •°• (a²–b²) = (a+b)(a-b) [tex] \implies \sf \: {x}^{2} – {1}^{2}[/tex] [tex] \implies \sf \:(x + 1)(x – 1) = 0 [/tex] [tex]\implies \sf \:x = – 1 \: \: and \: \: 1[/tex] •°• Zeroes of the polynomial is ±1 !! _______________________ Reply
[tex]\bold AnswEr:-[/tex]
Quadratic polynomial = x² – 1
Zeroes of polynomial = -1 & 1
[tex]\rule{200}{1}[/tex]
Explanation:-
Let the zeroes of polynomial be α & β
Given:-
[tex]\star\: \boxed{\boxed{\sf\blue{x^2 – (Sum \: of \: zeros)x + Product\: of\: zeros }}}[/tex]
Here,
⇒ Polynomial = x² – (0)x + (-1)
⇒ Polynomial = x² – 0x – 1
⇒ Polynomial = x² – 1
Therefore,
[tex]\therefore\underline{\textsf{Quadratic polynomial = {\textbf{x$^2$- 1}}}}[/tex]
[tex]\rule{200}{1}[/tex]
⇒ x² – 1 = 0
[We know, a² – b² = (a + b)(a – b) ]
⇒ (x + 1)(x – 1) = 0
⇒ x = -1 or x = 1
Therefore,
[tex]\therefore\underline{\textsf{Zeros of polynomial = {\textbf{-1 \& 1 }}}}[/tex]
Step-by-step explanation:
__________________
[tex] \maltese \: \large \underline{ \bf{Answer:-}}[/tex]
Given :
[tex] \bold {• \: \: \: S um \:of \: \: zeroes \: \: of \: \: a \: \: quadratic \: \: polynomial \: \: ( \alpha + \beta ) = 0 }[/tex]
[tex] \bold {• \: \: \:product \: \:of \: \: zeroes \: \: of \: \: a \: \: quadratic \: \: polynomial \: \: ( \alpha \beta ) = – 1 }[/tex]
To Find :
Solution :
General form for quadratic equations,
[tex] {\bf{ \boxed{ {x}^{2} – ( \alpha + \beta )x + \alpha \beta }}}[/tex]
we have that ,
[tex] \alpha + \beta = 0[/tex]
[tex] \alpha \beta = – 1[/tex]
Substitute the values in the form ,
[tex] \bf \implies \: {x}^{2} – (0)x -1[/tex]
[tex] \implies \bf \: {x}^{2} – 1[/tex]
Next , find the zeroes of the polynomial.
It is in the form (a²–b²)
•°• (a²–b²) = (a+b)(a-b)
[tex] \implies \sf \: {x}^{2} – {1}^{2}[/tex]
[tex] \implies \sf \:(x + 1)(x – 1) = 0 [/tex]
[tex]\implies \sf \:x = – 1 \: \: and \: \: 1[/tex]
•°• Zeroes of the polynomial is ±1 !!
_______________________