[tex]\Huge\bf\underline{\underline{\red{★Question:-}}}[/tex](x + 3)/(x – 2) – (1 – x)/x = 17/4. Please solve. Don’t spam!! About the author Valentina
ANSWER: Given: (x + 3)/(x – 2) – (1 – x)/x = 17/4 To Find: Value of x Solution: We are given that, [tex]\implies\sf\dfrac{x+3}{x-2}-\dfrac{1-x}{x}=\dfrac{17}{4}[/tex] On taking LCM in LHS, [tex]\implies\sf\dfrac{(x+3)(x)-(1-x)(x-2)}{(x)(x-2)}=\dfrac{17}{4}[/tex] So, [tex]\implies\sf\dfrac{(x^2+3x)-(x-x^2-2+2x)}{x^2-2x}=\dfrac{17}{4}[/tex] On simplifying, [tex]\implies\sf\dfrac{x^2+3x-x+x^2+2-2x}{x^2-2x}=\dfrac{17}{4}[/tex] Solving like terms, [tex]\implies\sf\dfrac{2x^2+2}{x^2-2x}=\dfrac{17}{4}[/tex] On cross-multiplying, [tex]\implies\sf4(2x^2+2)=17(x^2-2x)[/tex] Hence, [tex]\implies\sf8x^2+8=17x^2-34x[/tex] Transposing LHS to RHS, [tex]\implies\sf0=17x^2-34x-8x^2-8 [/tex] Hence, [tex]\implies\sf9x^2-34x-8=0[/tex] On splitting the middle term, [tex]\implies\sf9x^2-36x+2x-8=0[/tex] Taking common, [tex]\implies\sf9x(x-4)+2(x-4)=0[/tex] Taking (x – 4) common, [tex]\implies\sf(x-4)(9x+2)=0[/tex] So, [tex]\implies\sf x-4=0\:\:\:and\:\:\:9x+2=0[/tex] Therefore, [tex]\implies\bf x=4\:\:\:and\:\:\:x=\dfrac{-2}{9}[/tex] Reply
To find the answer of the given terms:- [tex]\frac{x+3}{x-2}-\frac{1-x}{x}=\frac{17}{4} [/tex] [tex]x−2 x+3 − x 1−x = 4 17[/tex] Take LCM for the given terms:- [tex]\frac{(x+3)(x)-(x-2)(1-x)}{x(x-2)}=\frac{17}{4} x(x−2) \\ (x+3)(x)−(x−2)(1−x) = 4 17[/tex] Cross multiply both left side and right side:- [tex]\begin{gathered}\begin{array}{l}{4\left(x^{2}+3 x-\left(x-2-x^{2}+2 x\right)\right)=17\left(x^{2}-2 x\right)} \\ {4\left(x^{2}+3 x+x^{2}-3 x+2\right)=17 x^{2}-34 x} \\ {4\left(2 x^{2}+2\right)=17 x^{2}-34 x}\end{array}\end{gathered} 4(x 2 +3x−(x−2−x 2 +2x))=17(x 2 −2x) 4(x 2 +3x+x 2 −3x+2)=17x 2 −34x 4(2x 2 +2)=17x 2 −34x 8 x^{2}+8=17 x^{2}-34 x8x 2 +8=17x 2 −34x[/tex] The quadratic equation is formed, find the roots of the quadratic equation. [tex]\begin{gathered}\begin{array}{l}{9 x^{2}-34 x-8=0} \\ {9 x^{2}-36 x+2 x-8=0} \\ {9 x(x-4)+2(x-4)=0}\end{array}\end{gathered} 9x 2 −34x−8=0 9x 2 −36x+2x−8=0 9x(x−4)+2(x−4)=0 [/tex] The value of x by solving the quadratic equation is:- [tex]\begin{gathered}\begin{array}{l}{(x-4)(9 x+2)=0} \\ {x=4,-\frac{2}{9}}\end{array}\end{gathered} (x−4)(9x+2)=0 x=4,− 92 [/tex] Therefore, x=4, [tex]\bold{\frac{-2}{9}} 9−2[/tex] [tex] if \frac{x+3}{x-2}-\frac{1-x}{x}=\frac{17}{4}[/tex] Reply
ANSWER:
Given:
To Find:
Solution:
We are given that,
[tex]\implies\sf\dfrac{x+3}{x-2}-\dfrac{1-x}{x}=\dfrac{17}{4}[/tex]
On taking LCM in LHS,
[tex]\implies\sf\dfrac{(x+3)(x)-(1-x)(x-2)}{(x)(x-2)}=\dfrac{17}{4}[/tex]
So,
[tex]\implies\sf\dfrac{(x^2+3x)-(x-x^2-2+2x)}{x^2-2x}=\dfrac{17}{4}[/tex]
On simplifying,
[tex]\implies\sf\dfrac{x^2+3x-x+x^2+2-2x}{x^2-2x}=\dfrac{17}{4}[/tex]
Solving like terms,
[tex]\implies\sf\dfrac{2x^2+2}{x^2-2x}=\dfrac{17}{4}[/tex]
On cross-multiplying,
[tex]\implies\sf4(2x^2+2)=17(x^2-2x)[/tex]
Hence,
[tex]\implies\sf8x^2+8=17x^2-34x[/tex]
Transposing LHS to RHS,
[tex]\implies\sf0=17x^2-34x-8x^2-8 [/tex]
Hence,
[tex]\implies\sf9x^2-34x-8=0[/tex]
On splitting the middle term,
[tex]\implies\sf9x^2-36x+2x-8=0[/tex]
Taking common,
[tex]\implies\sf9x(x-4)+2(x-4)=0[/tex]
Taking (x – 4) common,
[tex]\implies\sf(x-4)(9x+2)=0[/tex]
So,
[tex]\implies\sf x-4=0\:\:\:and\:\:\:9x+2=0[/tex]
Therefore,
[tex]\implies\bf x=4\:\:\:and\:\:\:x=\dfrac{-2}{9}[/tex]
To find the answer of the given terms:-
[tex]\frac{x+3}{x-2}-\frac{1-x}{x}=\frac{17}{4} [/tex]
[tex]x−2
x+3
−
x
1−x
=
4
17[/tex]
Take LCM for the given terms:-
[tex]\frac{(x+3)(x)-(x-2)(1-x)}{x(x-2)}=\frac{17}{4}
x(x−2) \\
(x+3)(x)−(x−2)(1−x)
=
4
17[/tex]
Cross multiply both left side and right side:-
[tex]\begin{gathered}\begin{array}{l}{4\left(x^{2}+3 x-\left(x-2-x^{2}+2 x\right)\right)=17\left(x^{2}-2 x\right)} \\ {4\left(x^{2}+3 x+x^{2}-3 x+2\right)=17 x^{2}-34 x} \\ {4\left(2 x^{2}+2\right)=17 x^{2}-34 x}\end{array}\end{gathered}
4(x
2
+3x−(x−2−x
2
+2x))=17(x
2
−2x)
4(x
2
+3x+x
2
−3x+2)=17x
2
−34x
4(2x
2
+2)=17x
2
−34x
8 x^{2}+8=17 x^{2}-34 x8x
2
+8=17x
2
−34x[/tex]
The quadratic equation is formed, find the roots of the quadratic equation.
[tex]\begin{gathered}\begin{array}{l}{9 x^{2}-34 x-8=0} \\ {9 x^{2}-36 x+2 x-8=0} \\ {9 x(x-4)+2(x-4)=0}\end{array}\end{gathered}
9x
2
−34x−8=0
9x
2
−36x+2x−8=0
9x(x−4)+2(x−4)=0
[/tex]
The value of x by solving the quadratic equation is:-
[tex]\begin{gathered}\begin{array}{l}{(x-4)(9 x+2)=0} \\ {x=4,-\frac{2}{9}}\end{array}\end{gathered}
(x−4)(9x+2)=0
x=4,− 92
[/tex]
Therefore, x=4,
[tex]\bold{\frac{-2}{9}} 9−2[/tex]
[tex] if \frac{x+3}{x-2}-\frac{1-x}{x}=\frac{17}{4}[/tex]