[tex]\large\underline{\sf{Solution-}}[/tex] We know, Radius of curvature for cartesian curve y = f(x) is given by [tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{ \sf{ \: R = \dfrac{ {\bigg(1 + {y_1}^{2} \bigg) }^{\dfrac{3}{2} } }{ |y_2| }}}[/tex] Now, Given curve is [tex]\rm :\longmapsto\: {x}^{2} + {y}^{2} = 25 [/tex] On differentiating both sides w. r. t. x, we get [tex]\rm :\longmapsto\:2x + 2yy_1 = 0[/tex] [tex]\rm :\longmapsto\:x + yy_1 = 0 – – – (1)[/tex] [tex]\bf\implies \: y_1= – \: \dfrac{x}{y} [/tex] [tex]\bf\implies \: y_1 \: at \: (4,3)= – \: \dfrac{4}{3} – – (2)[/tex] From equation (1), we have [tex]\rm :\longmapsto\:x + yy_1 = 0[/tex] On differentiating both sides w. r. t. x, we get [tex]\rm :\longmapsto\:1 + y\dfrac{d}{dx} y_1 + y_1 \: \dfrac{d}{dx}y = 0[/tex] [tex]\rm :\longmapsto\:1 + yy_2 + y_1 \times y_1 = 0[/tex] [tex]\rm :\longmapsto\: yy_2 = – 1 – {y_1}^{2} [/tex] [tex]\bf\implies \:y_2 = \: – \: \dfrac{1 + {y_1}^{2} }{y} [/tex] [tex]\bf\implies \:y_2 \: at \: (4,3) = \: – \: \dfrac{1 + {\bigg( – \dfrac{4}{3} \bigg) }^{2} }{3} = – \dfrac{25}{27} [/tex] Hence, We have [tex]\rm :\longmapsto\:y_1 = \: – \: \dfrac{4}{3} [/tex] and [tex]\rm :\longmapsto\:y_2 = \: – \: \dfrac{25}{27} [/tex] Consider, [tex]\rm :\longmapsto\:1 + {y_1}^{2} [/tex] [tex] \rm \: = \: \: 1 + {\bigg( – \: \dfrac{4}{3} \bigg) }^{2} [/tex] [tex]\rm \: = \: \: 1 + \dfrac{16}{9} [/tex] [tex]\rm \: = \: \: \dfrac{9 + 16}{9} [/tex] [tex]\rm \: = \: \: \dfrac{25}{9} [/tex] Now, Consider, [tex]\rm :\longmapsto\: {\bigg(1 + {y_1}^{2} \bigg) }^{\dfrac{3}{2} } [/tex] [tex]\rm \: = \: \: \: {\bigg( \dfrac{25}{9} \bigg) }^{\dfrac{3}{2} } [/tex] [tex]\rm \: = \: \: \: {\bigg( \dfrac{5}{3} \bigg) }^{2 \times \dfrac{3}{2} } [/tex] [tex]\rm \: = \: \: \: {\bigg( \dfrac{5}{3} \bigg) }^{3} [/tex] [tex]\rm \: = \: \: \: \dfrac{125}{27}[/tex] Hence, [tex]\bf :\longmapsto\: {\bigg(1 + {y_1}^{2} \bigg) }^{\dfrac{3}{2} } = \dfrac{125}{27} [/tex] So, Radius of curvature is [tex]\rm :\longmapsto\:{ \: R = \dfrac{ {\bigg(1 + {y_1}^{2} \bigg) }^{\dfrac{3}{2} } }{ |y_2| }}[/tex] [tex]\rm \: = \: \: \dfrac{\dfrac{125}{27} }{ \: \: \: \bigg| – \dfrac{25}{27}\bigg| \: \: \: } [/tex] [tex]\rm \: = \: \: \dfrac{\dfrac{125}{27} }{ \: \: \: \bigg|\dfrac{25}{27}\bigg| \: \: \: } [/tex] [tex]\rm \: = \: \: \dfrac{125}{27} \times \dfrac{27}{25} [/tex] [tex]\rm \: = \: \: 5[/tex] [tex]\bf\implies \:Radius \: of \: curvature \: (R) = 5 \: units[/tex] Additional Information :- Radius of curvature for polar curve is given by [tex]\rm :\longmapsto\:{ \: R = \dfrac{ {\bigg( {r}^{2} + {r_1}^{2} \bigg) }^{\dfrac{3}{2} } }{ | {r}^{2} + 2 {r_1}^{2} – r r_2| }}[/tex] Radius of curvature for parametric curve is given by [tex]\rm :\longmapsto\:{ \: R = \dfrac{ {\bigg( {x_1}^{2} + {y_1}^{2} \bigg) }^{\dfrac{3}{2} } }{ |x_1y_2 – x_2y_1| }}[/tex] Reply
Answer: Given curve is circle with center atvirigin and point 4,3 satisfies the equation radius is 5 Reply
[tex]\large\underline{\sf{Solution-}}[/tex]
We know,
Radius of curvature for cartesian curve y = f(x) is given by
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{ \sf{ \: R = \dfrac{ {\bigg(1 + {y_1}^{2} \bigg) }^{\dfrac{3}{2} } }{ |y_2| }}}[/tex]
Now,
Given curve is
[tex]\rm :\longmapsto\: {x}^{2} + {y}^{2} = 25 [/tex]
On differentiating both sides w. r. t. x, we get
[tex]\rm :\longmapsto\:2x + 2yy_1 = 0[/tex]
[tex]\rm :\longmapsto\:x + yy_1 = 0 – – – (1)[/tex]
[tex]\bf\implies \: y_1= – \: \dfrac{x}{y} [/tex]
[tex]\bf\implies \: y_1 \: at \: (4,3)= – \: \dfrac{4}{3} – – (2)[/tex]
From equation (1), we have
[tex]\rm :\longmapsto\:x + yy_1 = 0[/tex]
On differentiating both sides w. r. t. x, we get
[tex]\rm :\longmapsto\:1 + y\dfrac{d}{dx} y_1 + y_1 \: \dfrac{d}{dx}y = 0[/tex]
[tex]\rm :\longmapsto\:1 + yy_2 + y_1 \times y_1 = 0[/tex]
[tex]\rm :\longmapsto\: yy_2 = – 1 – {y_1}^{2} [/tex]
[tex]\bf\implies \:y_2 = \: – \: \dfrac{1 + {y_1}^{2} }{y} [/tex]
[tex]\bf\implies \:y_2 \: at \: (4,3) = \: – \: \dfrac{1 + {\bigg( – \dfrac{4}{3} \bigg) }^{2} }{3} = – \dfrac{25}{27} [/tex]
Hence,
We have
[tex]\rm :\longmapsto\:y_1 = \: – \: \dfrac{4}{3} [/tex]
and
[tex]\rm :\longmapsto\:y_2 = \: – \: \dfrac{25}{27} [/tex]
Consider,
[tex]\rm :\longmapsto\:1 + {y_1}^{2} [/tex]
[tex] \rm \: = \: \: 1 + {\bigg( – \: \dfrac{4}{3} \bigg) }^{2} [/tex]
[tex]\rm \: = \: \: 1 + \dfrac{16}{9} [/tex]
[tex]\rm \: = \: \: \dfrac{9 + 16}{9} [/tex]
[tex]\rm \: = \: \: \dfrac{25}{9} [/tex]
Now,
Consider,
[tex]\rm :\longmapsto\: {\bigg(1 + {y_1}^{2} \bigg) }^{\dfrac{3}{2} } [/tex]
[tex]\rm \: = \: \: \: {\bigg( \dfrac{25}{9} \bigg) }^{\dfrac{3}{2} } [/tex]
[tex]\rm \: = \: \: \: {\bigg( \dfrac{5}{3} \bigg) }^{2 \times \dfrac{3}{2} } [/tex]
[tex]\rm \: = \: \: \: {\bigg( \dfrac{5}{3} \bigg) }^{3} [/tex]
[tex]\rm \: = \: \: \: \dfrac{125}{27}[/tex]
Hence,
[tex]\bf :\longmapsto\: {\bigg(1 + {y_1}^{2} \bigg) }^{\dfrac{3}{2} } = \dfrac{125}{27} [/tex]
So,
Radius of curvature is
[tex]\rm :\longmapsto\:{ \: R = \dfrac{ {\bigg(1 + {y_1}^{2} \bigg) }^{\dfrac{3}{2} } }{ |y_2| }}[/tex]
[tex]\rm \: = \: \: \dfrac{\dfrac{125}{27} }{ \: \: \: \bigg| – \dfrac{25}{27}\bigg| \: \: \: } [/tex]
[tex]\rm \: = \: \: \dfrac{\dfrac{125}{27} }{ \: \: \: \bigg|\dfrac{25}{27}\bigg| \: \: \: } [/tex]
[tex]\rm \: = \: \: \dfrac{125}{27} \times \dfrac{27}{25} [/tex]
[tex]\rm \: = \: \: 5[/tex]
[tex]\bf\implies \:Radius \: of \: curvature \: (R) = 5 \: units[/tex]
Additional Information :-
Radius of curvature for polar curve is given by
[tex]\rm :\longmapsto\:{ \: R = \dfrac{ {\bigg( {r}^{2} + {r_1}^{2} \bigg) }^{\dfrac{3}{2} } }{ | {r}^{2} + 2 {r_1}^{2} – r r_2| }}[/tex]
Radius of curvature for parametric curve is given by
[tex]\rm :\longmapsto\:{ \: R = \dfrac{ {\bigg( {x_1}^{2} + {y_1}^{2} \bigg) }^{\dfrac{3}{2} } }{ |x_1y_2 – x_2y_1| }}[/tex]
Answer:
Given curve is circle with center atvirigin and point 4,3 satisfies the equation radius is 5