prove that 7 root 3 / root 10 + root 3 – 2 root 5 / root 6 + root 5 -3 root 2 / root 15 + 3 root 2 = 1 About the author Eloise
Answer: Step-by-step explanation: 7√3 / √10+√3 – 2√5 / √6 – 3√2 / √15 + 3√2 Rationalise 7√3 / √10+√3 = 7√3 ( √10 – √3 ) / ( √10+√3 ) ( √10-√3 ) = 7√3 ( √10 – √3 ) / √10^2 – √3^2 = 7√3 ( √10 – √3 ) / 10 – 3 = 7√3 ( √10 – √3 ) /7 = √3 ( √10 – √3 ) = √30 – √9 = √30 – 3 2√5 / √6 + √5 = 2√5 ( √6 – √5 ) / (√6 + √5) ( √6 – √5 ) = 2√30 – 10 / √6^2 – √5^2 = 2√30 – 10 / 6-5 = 2√30 – 10 3√2 / √15 + 3√2 = 3√2 ( √15 – 3√2 ) / ( √15 + 3√2 ) ( √15 – 3√2 ) = 3√2 ( √15 – 3√2 ) / √15^2 – 3√2^2 = 3√2 ( √15 – 3√2 ) / 15 – 18 = 3√2 ( √15 – 3√2 ) / -3 = -√2 ( √15 – 3√2 ) = -√30 + 6 (7√3 / √10+√3) – (2√5 / √6 + √5 ) -( 3√2 / √15 + 3√2) = (√30 – 3 ) – ( 2√30 – 10 ) – ( -√30 + 6 ) = √30 – 3 – 2√30 + 10 + √30 – 6 = 1 (7√3 / √10+√3) – (2√5 / √6 + √5 ) -( 3√2 / √15 + 3√2) = 1 Hence proved Reply
Answer:
Step-by-step explanation:
7√3 / √10+√3 – 2√5 / √6 – 3√2 / √15 + 3√2
Rationalise
7√3 / √10+√3 = 7√3 ( √10 – √3 ) / ( √10+√3 ) ( √10-√3 )
= 7√3 ( √10 – √3 ) / √10^2 – √3^2
= 7√3 ( √10 – √3 ) / 10 – 3
= 7√3 ( √10 – √3 ) /7
= √3 ( √10 – √3 )
= √30 – √9
= √30 – 3
2√5 / √6 + √5 = 2√5 ( √6 – √5 ) / (√6 + √5) ( √6 – √5 )
= 2√30 – 10 / √6^2 – √5^2
= 2√30 – 10 / 6-5
= 2√30 – 10
3√2 / √15 + 3√2 = 3√2 ( √15 – 3√2 ) / ( √15 + 3√2 ) ( √15 – 3√2 )
= 3√2 ( √15 – 3√2 ) / √15^2 – 3√2^2
= 3√2 ( √15 – 3√2 ) / 15 – 18
= 3√2 ( √15 – 3√2 ) / -3
= -√2 ( √15 – 3√2 )
= -√30 + 6
(7√3 / √10+√3) – (2√5 / √6 + √5 ) -( 3√2 / √15 + 3√2)
= (√30 – 3 ) – ( 2√30 – 10 ) – ( -√30 + 6 )
= √30 – 3 – 2√30 + 10 + √30 – 6
= 1
(7√3 / √10+√3) – (2√5 / √6 + √5 ) -( 3√2 / √15 + 3√2) = 1
Hence proved