The least integral value of ‘a’ for which theequation x2[tex]x {}^{2} [/tex] – 2(a – 1) x +(2a + 1) = 0 hasboth the roots positive is(A) 3(B) 4(C) 1(D) 5 About the author Isabelle
Given :- [tex]\sf x^2-2(a-1)x+(2a+1)[/tex] To Find :- Intergal value Solution :- Since both roots are roots are positive [tex]\sf f(0) > 0[/tex] By putting value [tex]\sf f(0) = (0)^2 – 2(a-1)0+(2a+1)>0[/tex] [tex]\sf f(0) = 0 – 0 + 2a+1>0[/tex] [tex]\sf f(0) = 2a+1>0[/tex] [tex]\sf f(0)=\dfrac{1}{2}+a>0[/tex] [tex]\sf f(0) = a>0-\dfrac{1}{2}[/tex] [tex]\sf f(0) = a>\dfrac{-1}{2}[/tex] [tex]\sf f(0) = 2a>-1[/tex] [tex]\sf f(0)=\dfrac{2(a-1)}{2}>0[/tex] [tex]\sf f(0)=a>1[/tex] [tex]\sf 4(a-1)^2-4(2a+1)\geq0[/tex] [tex]\sf (a-1)^2-2a-1\geq0[/tex] [tex]\sf a^2-2a+1-2a-1\geq0[/tex] [tex]\sf a^2-2a-2a\geq0[/tex] [tex]\sf a^2-4a\geq0[/tex] [tex]\sf a(a-4)\geq0[/tex] [tex]\sf a =4[/tex] Reply
Solution Given: An equation [tex]x^2-2(a-1)x+2a+1=0[/tex]. To find: The least integral value of [tex]a[/tex] that makes both the root positive. For roots to be a real number, [tex]\dfrac{D}{4} =(a-1)^2-(2a+1)=a^2-2a+1-2a-1[/tex] [tex]=a^2-4a=\boxed{a(a-4)\geq 0}[/tex] Let the roots be [tex]\alpha ,\beta[/tex]. First, the sum and product of two positive numbers are positive. [tex]\begin{cases} & \alpha +\beta =2a-2 \\ & \alpha \beta =2a+1 \end{cases}[/tex] We need both of them to be positive. [tex]\implies\begin{cases} & a>1 \\ & a>-\dfrac{1}{2} \end{cases}[/tex] [tex]\implies \boxed{a>1}[/tex] Now we have two inequality, and both need to be satisfied, so [tex]\begin{cases} & a\leq 0, a\geq 4 \\ & a> 1 \end{cases}\implies \boxed{a\geq 4}[/tex] The least integral value in this inequality is 4. So the correct option is (B). Reply
Given :-
[tex]\sf x^2-2(a-1)x+(2a+1)[/tex]
To Find :-
Intergal value
Solution :-
Since both roots are roots are positive
[tex]\sf f(0) > 0[/tex]
By putting value
[tex]\sf f(0) = (0)^2 – 2(a-1)0+(2a+1)>0[/tex]
[tex]\sf f(0) = 0 – 0 + 2a+1>0[/tex]
[tex]\sf f(0) = 2a+1>0[/tex]
[tex]\sf f(0)=\dfrac{1}{2}+a>0[/tex]
[tex]\sf f(0) = a>0-\dfrac{1}{2}[/tex]
[tex]\sf f(0) = a>\dfrac{-1}{2}[/tex]
[tex]\sf f(0) = 2a>-1[/tex]
[tex]\sf f(0)=\dfrac{2(a-1)}{2}>0[/tex]
[tex]\sf f(0)=a>1[/tex]
[tex]\sf 4(a-1)^2-4(2a+1)\geq0[/tex]
[tex]\sf (a-1)^2-2a-1\geq0[/tex]
[tex]\sf a^2-2a+1-2a-1\geq0[/tex]
[tex]\sf a^2-2a-2a\geq0[/tex]
[tex]\sf a^2-4a\geq0[/tex]
[tex]\sf a(a-4)\geq0[/tex]
[tex]\sf a =4[/tex]
Solution
Given: An equation [tex]x^2-2(a-1)x+2a+1=0[/tex].
To find: The least integral value of [tex]a[/tex] that makes both the root positive.
For roots to be a real number,
[tex]\dfrac{D}{4} =(a-1)^2-(2a+1)=a^2-2a+1-2a-1[/tex]
[tex]=a^2-4a=\boxed{a(a-4)\geq 0}[/tex]
Let the roots be [tex]\alpha ,\beta[/tex].
First, the sum and product of two positive numbers are positive.
[tex]\begin{cases} & \alpha +\beta =2a-2 \\ & \alpha \beta =2a+1 \end{cases}[/tex]
We need both of them to be positive.
[tex]\implies\begin{cases} & a>1 \\ & a>-\dfrac{1}{2} \end{cases}[/tex]
[tex]\implies \boxed{a>1}[/tex]
Now we have two inequality, and both need to be satisfied, so
[tex]\begin{cases} & a\leq 0, a\geq 4 \\ & a> 1 \end{cases}\implies \boxed{a\geq 4}[/tex]
The least integral value in this inequality is 4. So the correct option is (B).