Answer: Step-by-step explanation: 2+root3/2-root 3 =2+[tex]\sqrt{3\\[/tex]/2-[tex]\sqrt{3\\[/tex] * 2+[tex]\sqrt{3\\[/tex]/2-[tex]\sqrt{3\\[/tex] =(2+[tex]\sqrt{3\\[/tex])^2/ 2^2 – ([tex]\sqrt{3\\[/tex])^2 4+3+4[tex]\sqrt{3\\[/tex]/4-3 7+4[tex]\sqrt{3\\[/tex]/1 On comparing a+b[tex]\sqrt{3\\[/tex] = 7+4[tex]\sqrt{3\\[/tex] Hence a = 7 b = 4 Reply
Answer: a=7 b=4 Step-by-step explanation: [tex] \frac{2 + \sqrt{3} }{2 – \sqrt{3} } \\ = \frac{2 + \sqrt{3} }{2 – \sqrt{3} } \times \frac{2 + \sqrt{3} }{2 + \sqrt{3} } \\ = \frac{4 +4 \sqrt{3} + 3 }{4 – 3} \\ = \frac{7 + 4 \sqrt{3} }{1} \\ = 7 + 4 \sqrt{3} \\ a + b \sqrt{3} = 7 + 4 \sqrt{3} \\ a = 7 \\ b = 4[/tex] Reply
Answer:
Step-by-step explanation:
2+root3/2-root 3
=2+[tex]\sqrt{3\\[/tex]/2-[tex]\sqrt{3\\[/tex] * 2+[tex]\sqrt{3\\[/tex]/2-[tex]\sqrt{3\\[/tex]
=(2+[tex]\sqrt{3\\[/tex])^2/ 2^2 – ([tex]\sqrt{3\\[/tex])^2
4+3+4[tex]\sqrt{3\\[/tex]/4-3
7+4[tex]\sqrt{3\\[/tex]/1
On comparing
a+b[tex]\sqrt{3\\[/tex] = 7+4[tex]\sqrt{3\\[/tex]
Hence a = 7
b = 4
Answer:
a=7
b=4
Step-by-step explanation:
[tex] \frac{2 + \sqrt{3} }{2 – \sqrt{3} } \\ = \frac{2 + \sqrt{3} }{2 – \sqrt{3} } \times \frac{2 + \sqrt{3} }{2 + \sqrt{3} } \\ = \frac{4 +4 \sqrt{3} + 3 }{4 – 3} \\ = \frac{7 + 4 \sqrt{3} }{1} \\ = 7 + 4 \sqrt{3} \\ a + b \sqrt{3} = 7 + 4 \sqrt{3} \\ a = 7 \\ b = 4[/tex]