If alpha and beta are the zeros of the polynomial f(x)= x2-4x+3, find the value of alpha4 × beta3 +alpha3 × beta4 About the author Harper
Answer : 108 Explanation : Given polynomial, ⇒ x² – 4x + 3 with zeros α and β On comparing with ax² + bx + c a = 1 b = -4 c = 3 Then, α + β = -b/a = 4 αβ = c/a = 3 Finding : ⇒ α⁴ × β³ + α³ × β⁴ ⇒ α³β³(α + β) ⇒ (αβ)³(α + β) On substituting the values, ⇒ (3)³(4) ⇒ 27 × 4 ⇒ 108 Required answer : 108 Reply
Answer :
108
Explanation :
Given polynomial,
⇒ x² – 4x + 3 with zeros α and β
On comparing with ax² + bx + c
Then,
Finding :
⇒ α⁴ × β³ + α³ × β⁴
⇒ α³β³(α + β)
⇒ (αβ)³(α + β)
On substituting the values,
⇒ (3)³(4)
⇒ 27 × 4
⇒ 108
Required answer : 108