If x = a^2-bc, y = b^2-ac, z=c^2-ab Then prove that x^3+y^3+z^3-3xyz is a perfect square About the author Samantha
Answer: Prove that:- (x/a)^3+(y/b)^3+(z/c)^3 = 3x.y.z/a.b.c. L.H.S. =(x/a)^3+(y/b)^3+(z/c)^3. We have on adding eq.(1) ,(2) & (3). x/a+y/b+z/c=b-c+c-a+a-b =0. If x/a+y/b+z/c=0 then (x/a)^3+(y/b)^3+(z/c)^3=3×(x/a)×(y/b)×(z/c). or (x/a)^3+(y/b)^3+(z/c)^3 =3.x.y.z/a.b..c. Proved. Hope it helps Reply
Answer:
567
Step-by-step explanation: hhjj58855787666666777777889999
Answer:
Prove that:-
(x/a)^3+(y/b)^3+(z/c)^3 = 3x.y.z/a.b.c.
L.H.S.
=(x/a)^3+(y/b)^3+(z/c)^3.
We have on adding eq.(1) ,(2) & (3).
x/a+y/b+z/c=b-c+c-a+a-b =0.
If x/a+y/b+z/c=0 then
(x/a)^3+(y/b)^3+(z/c)^3=3×(x/a)×(y/b)×(z/c).
or (x/a)^3+(y/b)^3+(z/c)^3 =3.x.y.z/a.b..c.
Proved.
Hope it helps