rdr/(r²+x²)³/² integrate this sorry I couldn’t write properly3/2is the power of whole(r²+x²) About the author Clara
Step-by-step explanation: Assume, [tex] {r}^{2} + {x}^{2} = {t}^{2} [/tex] Differentiating w.r.t r we get, [tex]rdr = tdt [/tex] So the integral can be written as [tex] \frac{tdt}{ {t}^{3} } = \frac{dt}{ {t}^{2} } [/tex] And integral of this would be, [tex] \frac{ – 1}{t} [/tex] Resubstituting we get, [tex] \frac{ – 1}{ \sqrt{( {x}^{2} + {r}^{2} ) } } [/tex] Reply
Step-by-step explanation:
Assume,
[tex] {r}^{2} + {x}^{2} = {t}^{2} [/tex]
Differentiating w.r.t r we get,
[tex]rdr = tdt [/tex]
So the integral can be written as
[tex] \frac{tdt}{ {t}^{3} } = \frac{dt}{ {t}^{2} } [/tex]
And integral of this would be,
[tex] \frac{ – 1}{t} [/tex]
Resubstituting we get,
[tex] \frac{ – 1}{ \sqrt{( {x}^{2} + {r}^{2} ) } } [/tex]