The Length breadth and height of a rectangular solid are in the ratio of 3 : 2 :1 and its total surface area is 352 CM square then find its length. About the author Kennedy
Answer: ☞︎︎︎Lᴇɴɢᴛʜ = 12 ᴄᴍ Step-by-step explanation: ✫Gɪᴠᴇɴ :- •Rᴀᴛɪᴏ ᴏғ Length breadth and height of a rectangular solid =3 : 2 :1 •Tᴏᴛᴀʟ sᴜʀғᴀᴄᴇ ᴀʀᴇᴀ = 352 ᴄᴍ ^2 ✫ᴀssᴜᴍᴇ:- • Lᴇɴɢᴛʜ = 3x • Bʀᴇᴀᴅᴛʜ = 2x • Hᴇɪɢʜᴛ = 1x ᴏʀ x ✫Fᴏʀᴍᴜʟᴀ:- •Tᴏᴛᴀʟ sᴜʀғᴀᴄᴇ ᴀʀᴇᴀ ᴏғ ᴄᴜʙᴏɪᴅ = 2( ʟʙ + ʙʜ + ʜʟ) ✫Nᴏᴡ ғɪɴᴅ ᴀʀᴇᴀ:- » 352= 2( 3x × 2x + 2x × x + x × 3x) » 352= 2( 6x^2 + 2x^2 + 3x^2) » 352= 2 × 11x^2 » 352= 22x^2 » x^2= 352/22 » x^2= 16 [tex] \tt» \: \: x= \sqrt{16} = 4[/tex] Sᴏ, ʟᴇɴɢᴛʜ = 3×4 = 12 ᴄᴍ _____________________________________ ☢︎︎Tʜᴀɴᴋs ғᴏʀ ǫᴜᴇsᴛɪᴏɴ Reply
Given:– Ratio of Length, breadth and height is 3:2:1. Total surface area is 352cm^2. To Find:– Find its length Solution:– Let consider length be 3x, breadth be 2x and height be x. According to the question, Using Formula: [tex] \: \: \sf \: total \: surface \: area = 2(lb + bh + lh)[/tex] Now substitute the values, [tex] \: \: \sf \: total \: surface \: area = 2(3x \times 2x + 2x \times x + 3x \times x) \\ \\ \: \: \sf \:352 = 2(6 {x}^{2} + 2 {x}^{2} + 3 {x}^{2} ) \\ \\ \: \: \sf \: 352 = 2 \times 11 {x}^{2} \\ \\ \: \: \sf \: 352 = 22 {x}^{2} \\ \\ \: \: \sf \therefore \: x = \sqrt{ \frac{352}{22} } = \sqrt{16} = 4cm[/tex] Hence,the value of x is 4 cm. Therefore, Length = 3x = 3 × 4 = 12cm Breadth = 2x = 2 × 4= 8cm Height = x = 4cm Reply
Answer:
☞︎︎︎Lᴇɴɢᴛʜ = 12 ᴄᴍ
Step-by-step explanation:
✫Gɪᴠᴇɴ :-
•Rᴀᴛɪᴏ ᴏғ Length breadth and height of a rectangular solid =3 : 2 :1
•Tᴏᴛᴀʟ sᴜʀғᴀᴄᴇ ᴀʀᴇᴀ = 352 ᴄᴍ ^2
✫ᴀssᴜᴍᴇ:-
• Lᴇɴɢᴛʜ = 3x
• Bʀᴇᴀᴅᴛʜ = 2x
• Hᴇɪɢʜᴛ = 1x ᴏʀ x
✫Fᴏʀᴍᴜʟᴀ:-
•Tᴏᴛᴀʟ sᴜʀғᴀᴄᴇ ᴀʀᴇᴀ ᴏғ ᴄᴜʙᴏɪᴅ = 2( ʟʙ + ʙʜ + ʜʟ)
✫Nᴏᴡ ғɪɴᴅ ᴀʀᴇᴀ:-
» 352= 2( 3x × 2x + 2x × x + x × 3x)
» 352= 2( 6x^2 + 2x^2 + 3x^2)
» 352= 2 × 11x^2
» 352= 22x^2
» x^2= 352/22
» x^2= 16
[tex] \tt» \: \: x= \sqrt{16} = 4[/tex]
Sᴏ, ʟᴇɴɢᴛʜ = 3×4 = 12 ᴄᴍ
_____________________________________
☢︎︎Tʜᴀɴᴋs ғᴏʀ ǫᴜᴇsᴛɪᴏɴ
Given:–
To Find:–
Solution:–
Let consider length be 3x, breadth be 2x and height be x.
According to the question,
Using Formula:
[tex] \: \: \sf \: total \: surface \: area = 2(lb + bh + lh)[/tex]
Now substitute the values,
[tex] \: \: \sf \: total \: surface \: area = 2(3x \times 2x + 2x \times x + 3x \times x) \\ \\ \: \: \sf \:352 = 2(6 {x}^{2} + 2 {x}^{2} + 3 {x}^{2} ) \\ \\ \: \: \sf \: 352 = 2 \times 11 {x}^{2} \\ \\ \: \: \sf \: 352 = 22 {x}^{2} \\ \\ \: \: \sf \therefore \: x = \sqrt{ \frac{352}{22} } = \sqrt{16} = 4cm[/tex]
Hence,the value of x is 4 cm.
Therefore,