In triangle ABC , DE is parallel to BC , DE is parallel to BC. If AD / BD = 3 / 4 and AC = 15 cm,

find AE

6.

In triangle ABC , DE is parallel to BC , DE is parallel to BC. If AD / BD = 3 / 4 and AC = 15 cm,

find AE

6.4 cm

6 cm

7 cm

5 cm​

About the author
Piper

2 thoughts on “In triangle ABC , DE is parallel to BC , DE is parallel to BC. If AD / BD = 3 / 4 and AC = 15 cm,<br /><br />find AE<br /><br />6.”

  1. Step-by-step explanation:

    Given : DE∥BC in △ ABC,

    Using Basic proportionality theorem,

    DB

    AD

    =

    EC

    AE

    3

    1.5

    =

    EC

    1

    ⇒EC=

    1.5

    3

    EC=3×

    15

    10

    =2 cm

    EC=2 cm.

    (ii) In △ABC,DE∥BC (Given)

    Using Basic proportionality theorem,

    DB

    AD

    =

    EC

    AE

    7.2

    AD

    =

    5.4

    1.8

    ⇒AD=1.8×

    5.4

    7.2

    =

    10

    18

    ×

    10

    72

    ×

    54

    10

    =

    10

    24

    ⇒AD=2.4cm

    So, AD=2.4 cm

    Reply
  2. [tex]\underline{\underline{\huge{\pink{\tt{\textbf Answer :-}}}}}[/tex]

    AD/DB =AE/(AC-AE)

    3/4=AE/(15-AE)

    3(15-AE)=4AE

    45=4AE+3AE

    45=4AE+3AE

    45=7AE

    AE=45/7

    =6.4

    Reply

Leave a Comment