9. When we factorise x2+5x+6, then we get:
A. (x + 2) (x + 3)
B. (x-2)(x-3)
C. (x × 2) + (x × 3)
D. (x × 2) –

9. When we factorise x2+5x+6, then we get:
A. (x + 2) (x + 3)
B. (x-2)(x-3)
C. (x × 2) + (x × 3)
D. (x × 2) – (x ×3)​

About the author
Piper

2 thoughts on “9. When we factorise x2+5x+6, then we get:<br />A. (x + 2) (x + 3)<br />B. (x-2)(x-3)<br />C. (x × 2) + (x × 3)<br />D. (x × 2) –”

  1. Answer:

    given equation : x² + 5x + 6

    Let us try factorizing this polynomial using splitting the middle term method.

    Factoring polynomials by splitting the middle term:

    We need to find two numbers ‘a’ and ‘b’ such that a + b =5 and ab = 6.

    On solving this we obtain, a = 3 and b = 2

    Thus, the above expression can be written as:

    x² + 5x + 6

    = x² + 3x + 2x + 6

    = x(x + 3) + 2(x + 3)

    = (x + 3)(x + 2)

    Thus, x+3 and x+2 are the factors of the polynomial x2 + 5x + 6.

    Reply
  2. ⠀☆ GIVEN⠀ POLYNOMIALx² + 5x + 6 :

    ⠀⠀⠀⠀

    [tex]:\implies\sf x^2+3x + 6 = 0 \\\\\\\star \sf{By \:Using\:Sum-Product \:Pattern\::}\\\\ \:\implies\sf x^2 + 2x + 3x + 6= 0 \\\\\\\star\sf{Finding\:out\:Common\:Terms\::}\\\\\\:\implies\sf x(x + 2) +3(x + 2) = 0\\\\\\\star\sf{Now,\:Rewrite\:in\:Factored\:term\::}\\\\\\:\implies\sf (x + 2)\; (x + 3) = 0\\\\\\:\implies{\underline{\boxed{\frak{\purple{(x+2)(x+3)}}}}}\;\bigstar [/tex]

    Therefore,

    ⠀⠀⠀⠀⠀

    ⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm { Hence, \:The\:factors\:are\:\bf{(x+2)\:and \:(x+3)\: }}}}\\[/tex]

    ⠀⠀⠀⠀⠀⠀[tex]{\underline{ \mathrm { \:The\:\:\: Option\:A\:is\:correct }}}\\[/tex]

    ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

    Reply

Leave a Comment