9. When we factorise x2+5x+6, then we get:A. (x + 2) (x + 3)B. (x-2)(x-3)C. (x × 2) + (x × 3)D. (x × 2) – (x ×3) About the author Piper
Answer: given equation : x² + 5x + 6 Let us try factorizing this polynomial using splitting the middle term method. Factoring polynomials by splitting the middle term: We need to find two numbers ‘a’ and ‘b’ such that a + b =5 and ab = 6. On solving this we obtain, a = 3 and b = 2 Thus, the above expression can be written as: x² + 5x + 6 = x² + 3x + 2x + 6 = x(x + 3) + 2(x + 3) = (x + 3)(x + 2) Thus, x+3 and x+2 are the factors of the polynomial x2 + 5x + 6. Reply
⠀☆ GIVEN⠀ POLYNOMIAL – x² + 5x + 6 : ⠀⠀⠀⠀ [tex]:\implies\sf x^2+3x + 6 = 0 \\\\\\\star \sf{By \:Using\:Sum-Product \:Pattern\::}\\\\ \:\implies\sf x^2 + 2x + 3x + 6= 0 \\\\\\\star\sf{Finding\:out\:Common\:Terms\::}\\\\\\:\implies\sf x(x + 2) +3(x + 2) = 0\\\\\\\star\sf{Now,\:Rewrite\:in\:Factored\:term\::}\\\\\\:\implies\sf (x + 2)\; (x + 3) = 0\\\\\\:\implies{\underline{\boxed{\frak{\purple{(x+2)(x+3)}}}}}\;\bigstar [/tex] Therefore, ⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm { Hence, \:The\:factors\:are\:\bf{(x+2)\:and \:(x+3)\: }}}}\\[/tex] ⠀⠀⠀⠀⠀⠀[tex]{\underline{ \mathrm { \:The\:\:\: Option\:A\:is\:correct }}}\\[/tex] ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ Reply
Answer:
given equation : x² + 5x + 6
Let us try factorizing this polynomial using splitting the middle term method.
Factoring polynomials by splitting the middle term:
We need to find two numbers ‘a’ and ‘b’ such that a + b =5 and ab = 6.
On solving this we obtain, a = 3 and b = 2
Thus, the above expression can be written as:
x² + 5x + 6
= x² + 3x + 2x + 6
= x(x + 3) + 2(x + 3)
= (x + 3)(x + 2)
Thus, x+3 and x+2 are the factors of the polynomial x2 + 5x + 6.
⠀☆ GIVEN⠀ POLYNOMIAL – x² + 5x + 6 :
⠀⠀⠀⠀
[tex]:\implies\sf x^2+3x + 6 = 0 \\\\\\\star \sf{By \:Using\:Sum-Product \:Pattern\::}\\\\ \:\implies\sf x^2 + 2x + 3x + 6= 0 \\\\\\\star\sf{Finding\:out\:Common\:Terms\::}\\\\\\:\implies\sf x(x + 2) +3(x + 2) = 0\\\\\\\star\sf{Now,\:Rewrite\:in\:Factored\:term\::}\\\\\\:\implies\sf (x + 2)\; (x + 3) = 0\\\\\\:\implies{\underline{\boxed{\frak{\purple{(x+2)(x+3)}}}}}\;\bigstar [/tex]
Therefore,
⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm { Hence, \:The\:factors\:are\:\bf{(x+2)\:and \:(x+3)\: }}}}\\[/tex]
⠀⠀⠀⠀⠀⠀[tex]{\underline{ \mathrm { \:The\:\:\: Option\:A\:is\:correct }}}\\[/tex]
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀