Step-by-step explanation: Using (a+b)(a-b) = a² – b² LHS = (1 + tanA – secA) x (1 + tanA + SecA) = ( 1 + tanA)² – sec²A = 1 + tan²A + 2tanA – sec²A Also, sec²A = 1 + tan²A = 1 + tan²A + 2tanA – 1 – tan²A = 2tanA = RHS Hence, proved Reply
Step-by-step explanation:
Using (a+b)(a-b) = a² – b²
LHS =
(1 + tanA – secA) x (1 + tanA + SecA)
= ( 1 + tanA)² – sec²A
= 1 + tan²A + 2tanA – sec²A
Also, sec²A = 1 + tan²A
= 1 + tan²A + 2tanA – 1 – tan²A
= 2tanA = RHS
Hence, proved