7 Sin² theta + 3 Cos² theta = 4 find the value of Sec² theta [tex]7\sin^{2}\theta\:+\:3\cos^{2} \theta\:=\:4 \\ \\ \\ \sec\theta\: = [/tex] About the author Sadie
Answer: 7sin 2 θ+3cos 2 θ=4 ⇒7sin 2 θ+3(1−sin 2 θ)=4 ⇒7sin 2 θ+3−3sin 2 θ=4 ⇒4sin 2 θ=1 ⇒sin 2 θ= 4 1 ⇒sinθ= 2 1 ⇒sinθ=sin30 ∘ ⇒θ=30 ∘ L.H.S =secθ+cosecθ =sec30 ∘ +cosec30 ∘ = 3 2 +2 = R.H.S Hence proved. Reply
Answer:
7sin
2
θ+3cos
2
θ=4
⇒7sin
2
θ+3(1−sin
2
θ)=4
⇒7sin
2
θ+3−3sin
2
θ=4
⇒4sin
2
θ=1
⇒sin
2
θ=
4
1
⇒sinθ=
2
1
⇒sinθ=sin30
∘
⇒θ=30
∘
L.H.S =secθ+cosecθ
=sec30
∘
+cosec30
∘
=
3
2
+2
= R.H.S
Hence proved.