4. The volume of a cylinder is 2512 cu cm and its height is 12.5 cm. Find the radius of the base.
[tex](\pi = 3.14)[/tex]

4. The volume of a cylinder is 2512 cu cm and its height is 12.5 cm. Find the radius of the base.
[tex](\pi = 3.14)[/tex]

About the author
Eloise

2 thoughts on “4. The volume of a cylinder is 2512 cu cm and its height is 12.5 cm. Find the radius of the base.<br />[tex](\pi = 3.14)[/tex]<br”

  1. Step-by-step explanation:

    [tex]\pi \: r {}^{2} = 2512 \div 12.5 \\ = 200.96 \\ {r }^{2} = 200.96 \div 3.14 \\ = 64 \: (r = \sqrt{64 \: = 8}) [/tex]

    Reply
  2. [tex]\huge\orange{\boxed{\underline{ANSWER}}}[/tex]

    GIVEN THAT:

    [tex]&#10174;[/tex] The volume of cylinder = 2512 cm3

    [tex]&#10174;[/tex] Height of cylinde (h) = 12.5 cm

    FORMULA;

    [tex]&#10174;[/tex] The volume of cylinder(V) = πr2h

    where,

    • r = radius of the bace of cylinder

    • h = Height of cylinder

    SOLUTIONS;

    [tex]&#10174;[/tex] The volume of cylinder

    [tex]&#10230 \: \: \pi {r}^{2} h = 2512 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ &#10230 \: \: 3.14 \times {r}^{2} \times 12.5 = 2512 \\ &#10230 \: \: 39.25 \times {r}^{2} = 2512 \: \: \: \: \: \: \: \: \: \: \: \\ &#10230 \: \: {r}^{2} = \cancel\frac{2512}{39.25} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ &#10230 \: \: {r}^{2} = 64 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ &#10230 \: \: r = \sqrt{64} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ &#10230 \: \: r = 8cm \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex]

    [tex]&#10174;[/tex] So the radius of base of cylinder = 8 cm

    Reply

Leave a Comment