4. If the sum of perimeters of two circles as wellas the difference of their areas is 176numerically, find the radii of the two circles. About the author Isabelle
Answer: r₁= 28.5 and r₂= 27.5 Step-by-step explanation: Let radius of circle 1 be r₁ Let radius of circle 2 be r₂ Perimeter i.e., circumference of two circles = πr₁ + πr₂ Difference of their area = π(r₁)² – π(r₂)² Given, Sum of perimeters = Difference of their areas = 176 ∴ πr₁ + πr₂ = π(r₁)² – π(r₂)² = 176 ∴ πr₁ + πr₂ = 176 ∴ π (r₁ + r₂) = 176 ∴ r₁ + r₂ = 176 / π ∴ r₂ = 56 – r₁ ———————- (a) π(r₁)² – π(r₂)² = 176 ∴ π[ (r₁)²- (r₂)² ] = 176 ∴ π [ (r₁)² – (56-r₁)² ] = 176—————-( from (a) ) ∴ π [ r₁² – (56²- 112r₁-r₁²) = 176 ∴ r₁² – 3136 + 112r₁ + r₁² = 176 / π ∴ 112r₁ – 3136 = 56 ∴ 112r₁ = 56 + 3136 = 3192 ∴ 112r₁ = 3192 ∴ r₁ = 3192 / 112 = 28.5 Substituting this value in (a) ∴ r₂ = 56 – r₁ ∴ r₂ = 56 – 28.5 = 27.5 Reply
Answer:
From question,
circumference of circle = Area of circle
2πr=πr2
⇒r=2
∴Radius=2 units.
Answer:
r₁= 28.5 and r₂= 27.5
Step-by-step explanation:
Let radius of circle 1 be r₁
Let radius of circle 2 be r₂
Perimeter i.e., circumference of two circles = πr₁ + πr₂
Difference of their area = π(r₁)² – π(r₂)²
Given,
Sum of perimeters = Difference of their areas = 176
∴ πr₁ + πr₂ = π(r₁)² – π(r₂)² = 176
∴ πr₁ + πr₂ = 176
∴ π (r₁ + r₂) = 176
∴ r₁ + r₂ = 176 / π
∴ r₂ = 56 – r₁ ———————- (a)
π(r₁)² – π(r₂)² = 176
∴ π[ (r₁)²- (r₂)² ] = 176
∴ π [ (r₁)² – (56-r₁)² ] = 176—————-( from (a) )
∴ π [ r₁² – (56²- 112r₁-r₁²) = 176
∴ r₁² – 3136 + 112r₁ + r₁² = 176 / π
∴ 112r₁ – 3136 = 56
∴ 112r₁ = 56 + 3136 = 3192
∴ 112r₁ = 3192
∴ r₁ = 3192 / 112 = 28.5
Substituting this value in (a)
∴ r₂ = 56 – r₁
∴ r₂ = 56 – 28.5 = 27.5