436. Sides of a triangle are 8 m., 17 m. & 15 m. respectively.Find its area. About the author Brielle
[tex]\bf\purple{QuestioN:-}[/tex] Sides of a triangle are 8 m, 17 m, & 15 m respectively. Find its area. [tex]\bf\red{AnsweR:-}[/tex] GiveN:- Sides of the triangular fields are 8 m , 17 m and 15 m. FormulA ApplieD:- Using Heron’s formula, Area of the Triangle = √s(s – a)(s -b)(s – c) SolutioN:- In this formula, ‘S’ here means the semiperimeter. Perimeter = ( 8 + 17 + 15 ) m = 40 m Then semiperimeter, [tex]\bf{S=\dfrac{40}{2}=20\:\:m}[/tex] Now we can apply the formula here, ie, area of the triangle = √s(s – a)(s -b)(s – c) [tex]\bf\purple{\implies\sqrt{20(20-8)(20-17)(20-15)}}[/tex] [tex]\bf\purple{\implies\sqrt{20(12)(3)(5)}}[/tex] [tex]\bf\purple{\implies\sqrt{20\times12\times3\times5}}[/tex] [tex]\bf\purple{\implies\sqrt{3600}}[/tex] [tex]\bf\purple{\implies60\:m^2}[/tex] The area of the triangle = 60 m^2. Happy Learning! ☺ Reply
[tex]\bf\purple{QuestioN:-}[/tex]
Sides of a triangle are 8 m, 17 m, & 15 m respectively. Find its area.
[tex]\bf\red{AnsweR:-}[/tex]
GiveN:-
Sides of the triangular fields are 8 m , 17 m and 15 m.
FormulA ApplieD:-
Using Heron’s formula,
Area of the Triangle = √s(s – a)(s -b)(s – c)
SolutioN:-
In this formula,
‘S’ here means the semiperimeter.
Perimeter = ( 8 + 17 + 15 ) m = 40 m
Then semiperimeter,
[tex]\bf{S=\dfrac{40}{2}=20\:\:m}[/tex]
Now we can apply the formula here,
ie, area of the triangle = √s(s – a)(s -b)(s – c)
[tex]\bf\purple{\implies\sqrt{20(20-8)(20-17)(20-15)}}[/tex]
[tex]\bf\purple{\implies\sqrt{20(12)(3)(5)}}[/tex]
[tex]\bf\purple{\implies\sqrt{20\times12\times3\times5}}[/tex]
[tex]\bf\purple{\implies\sqrt{3600}}[/tex]
[tex]\bf\purple{\implies60\:m^2}[/tex]
The area of the triangle = 60 m^2.
Happy Learning! ☺