Answer: Quotient =x^2+y^2-xy+x+y+1 Step-by-step explanation: [tex]x^3 + y^3 – 1 + 3xy\\\\=(x+y)^3-3xy(x+y)- 1 + 3xy\\\\=(x+y)^3-1-3xy(x+y)+3xy\\\\=( x+y-1) [ (x+y)^2+(x+y)(1)+1]-3xy( x+y-1)\\\\=(x+y-1) ( x^2+y^2+xy+x+y+1)-3xy( x+y-1)\\\\=(x+y-1) ( x^2+y^2+2xy+x+y+1-3xy)\\\\ Or\\\\x^3 + y^3 – 1 + 3xy=(x+y-1) ( x^2+y^2-xy+x+y+1)\\\\[/tex] DIVIDING BOTH SIDES BY x+y-1 [tex]\bf \frac{x^3 + y^3 – 1 + 3xy}{x+y-1} =x^2+y^2 -xy+x+y+1[/tex] Reply
Answer:
Quotient =x^2+y^2-xy+x+y+1
Step-by-step explanation:
[tex]x^3 + y^3 – 1 + 3xy\\\\=(x+y)^3-3xy(x+y)- 1 + 3xy\\\\=(x+y)^3-1-3xy(x+y)+3xy\\\\=( x+y-1) [ (x+y)^2+(x+y)(1)+1]-3xy( x+y-1)\\\\=(x+y-1) ( x^2+y^2+xy+x+y+1)-3xy( x+y-1)\\\\=(x+y-1) ( x^2+y^2+2xy+x+y+1-3xy)\\\\ Or\\\\x^3 + y^3 – 1 + 3xy=(x+y-1) ( x^2+y^2-xy+x+y+1)\\\\[/tex]
DIVIDING BOTH SIDES BY x+y-1
[tex]\bf \frac{x^3 + y^3 – 1 + 3xy}{x+y-1} =x^2+y^2 -xy+x+y+1[/tex]