3 Sum of three numbers which are in the ratio 3:4:5 is 60. What is the sum oftheir squares?(A)1970(B)1430(C)1250(D)1760 About the author Hailey
Answer: Given :- Sum of three numbers are in the ratio of 3 : 4 : 5 is 60. To Find :- What is the sum of their squares. Solution :- Let, [tex]\mapsto[/tex] First number = 3x [tex]\mapsto[/tex] Second number = 4x [tex]\mapsto[/tex] Third number = 5x According to the question, [tex]\implies \sf 3x + 4x + 5x =\: 60[/tex] [tex]\implies \sf 7x + 5x =\: 60[/tex] [tex]\implies \sf 12x =\: 60[/tex] [tex]\implies \sf x =\: \dfrac{\cancel{60}}{\cancel{12}}[/tex] [tex]\implies \sf x =\: \dfrac{5}{1}[/tex] [tex]\implies \sf\bold{\green{x =\: 5}}[/tex] Hence, the required numbers are : [tex]\dashrightarrow[/tex] First number : [tex]\leadsto \sf 3x[/tex] [tex]\leadsto \sf 3(5)[/tex] [tex]\leadsto \sf 3 \times 5[/tex] [tex]\leadsto\sf\bold{\purple{15}}[/tex] [tex]\dashrightarrow[/tex] Second number : [tex]\leadsto \sf 4x[/tex] [tex]\leadsto \sf 4(5)[/tex] [tex]\leadsto \sf 4 \times 5[/tex] [tex]\leadsto \sf\bold{\purple{20}}[/tex] [tex]\dashrightarrow[/tex] Third number : [tex]\leadsto \sf 5x[/tex] [tex]\leadsto \sf 5(5)[/tex] [tex]\leadsto \sf 5 \times 5[/tex] [tex]\leadsto \sf\bold{\purple{25}}[/tex] Hence, the three numbers are 15, 20 and 25 respectively. Now, we have to find their squares : [tex]\bigstar \sf {(15)}^{2} =\: 15 \times 15 =\: \bold{\purple{225}}\\[/tex] [tex]\bigstar \sf {(20)}^{2} =\: 20 \times 20 =\: \bold{\purple{400}}\\[/tex] [tex]\bigstar \sf {(25)}^{2} =\: 25 \times 25 =\: \bold{\purple{625}}\\[/tex] Hence, their squares are 225, 400 and 625 respectively. Now, we have to find the sum of their squares : [tex]\Rightarrow \sf Sum\: of\: their\: squares =\: 225 + 400 + 625\\[/tex] [tex]\Rightarrow \sf Sum\: of\: their\: squares=\: 625 + 625\\[/tex] [tex]\Rightarrow \sf\bold{\red{Sum\: of\: their\: squares =\: 1250}}\\[/tex] [tex]\therefore[/tex] The sum of their squares is 1250 . Hence, the correct options is option no (c) 1250 . [tex]\rule{150}{2}[/tex] VERIFICATION : [tex]\implies \sf 3x + 4x + 5x =\: 60[/tex] By putting x = 5 we get, [tex]\implies \sf 3(5) + 4(5) + 5(5) =\: 60[/tex] [tex]\implies \sf 15 + 20 + 25 =\: 60[/tex] [tex]\implies \sf\bold{60 =\: 60}[/tex] Hence, Verified. Reply
Let the three numbers of 3x, 4x, and 5x, Sum of the squares of these = 1250. A/q, [tex] = (3x) {}^{2} + (4x) {}^{2} + (5x) {}^{2} = 1250 [/tex] [tex] = > 9x { }^{2} +16x {}^{2} + 25x {}^{2} = 1250 [/tex] [tex] = > 50x {}^{2} = 1250 [/tex] [tex] = >x {}^{2} = 1250 \div 50 [/tex] [tex] = >x {}^{2} = 25 [/tex] [tex] = > x = 5[/tex] Therefore, three numbers are:- [tex] = > 3x = 3(5) = 15[/tex] [tex] = > 4x = 4(5) = 20[/tex] [tex] = > 5x = 5(5) = 25[/tex] Now, Sum of these number = 15 + 20 + 25 = 60 Required Answer = 60. Step-by-step explanation: @Genius Reply
Answer:
Given :-
To Find :-
Solution :-
Let,
[tex]\mapsto[/tex] First number = 3x
[tex]\mapsto[/tex] Second number = 4x
[tex]\mapsto[/tex] Third number = 5x
According to the question,
[tex]\implies \sf 3x + 4x + 5x =\: 60[/tex]
[tex]\implies \sf 7x + 5x =\: 60[/tex]
[tex]\implies \sf 12x =\: 60[/tex]
[tex]\implies \sf x =\: \dfrac{\cancel{60}}{\cancel{12}}[/tex]
[tex]\implies \sf x =\: \dfrac{5}{1}[/tex]
[tex]\implies \sf\bold{\green{x =\: 5}}[/tex]
Hence, the required numbers are :
[tex]\dashrightarrow[/tex] First number :
[tex]\leadsto \sf 3x[/tex]
[tex]\leadsto \sf 3(5)[/tex]
[tex]\leadsto \sf 3 \times 5[/tex]
[tex]\leadsto\sf\bold{\purple{15}}[/tex]
[tex]\dashrightarrow[/tex] Second number :
[tex]\leadsto \sf 4x[/tex]
[tex]\leadsto \sf 4(5)[/tex]
[tex]\leadsto \sf 4 \times 5[/tex]
[tex]\leadsto \sf\bold{\purple{20}}[/tex]
[tex]\dashrightarrow[/tex] Third number :
[tex]\leadsto \sf 5x[/tex]
[tex]\leadsto \sf 5(5)[/tex]
[tex]\leadsto \sf 5 \times 5[/tex]
[tex]\leadsto \sf\bold{\purple{25}}[/tex]
Hence, the three numbers are 15, 20 and 25 respectively.
Now, we have to find their squares :
[tex]\bigstar \sf {(15)}^{2} =\: 15 \times 15 =\: \bold{\purple{225}}\\[/tex]
[tex]\bigstar \sf {(20)}^{2} =\: 20 \times 20 =\: \bold{\purple{400}}\\[/tex]
[tex]\bigstar \sf {(25)}^{2} =\: 25 \times 25 =\: \bold{\purple{625}}\\[/tex]
Hence, their squares are 225, 400 and 625 respectively.
Now, we have to find the sum of their squares :
[tex]\Rightarrow \sf Sum\: of\: their\: squares =\: 225 + 400 + 625\\[/tex]
[tex]\Rightarrow \sf Sum\: of\: their\: squares=\: 625 + 625\\[/tex]
[tex]\Rightarrow \sf\bold{\red{Sum\: of\: their\: squares =\: 1250}}\\[/tex]
[tex]\therefore[/tex] The sum of their squares is 1250 .
Hence, the correct options is option no (c) 1250 .
[tex]\rule{150}{2}[/tex]
VERIFICATION :
[tex]\implies \sf 3x + 4x + 5x =\: 60[/tex]
By putting x = 5 we get,
[tex]\implies \sf 3(5) + 4(5) + 5(5) =\: 60[/tex]
[tex]\implies \sf 15 + 20 + 25 =\: 60[/tex]
[tex]\implies \sf\bold{60 =\: 60}[/tex]
Hence, Verified.
Let the three numbers of 3x, 4x, and 5x, Sum of the squares of these = 1250.
A/q,
[tex] = (3x) {}^{2} + (4x) {}^{2} + (5x) {}^{2} = 1250 [/tex]
[tex] = > 9x { }^{2} +16x {}^{2} + 25x {}^{2} = 1250 [/tex]
[tex] = > 50x {}^{2} = 1250 [/tex]
[tex] = >x {}^{2} = 1250 \div 50 [/tex]
[tex] = >x {}^{2} = 25 [/tex]
[tex] = > x = 5[/tex]
Therefore, three numbers are:-
[tex] = > 3x = 3(5) = 15[/tex]
[tex] = > 4x = 4(5) = 20[/tex]
[tex] = > 5x = 5(5) = 25[/tex]
Now,
Sum of these number = 15 + 20 + 25 = 60
Required Answer = 60.
Step-by-step explanation:
@Genius