25. Find the sum of 1, 3.5, 6, 8.5, …. Upto 21terms.a) 546b) 520c) 496d) none About the author Katherine
Given ⇒First term (a) = 1 ⇒Common Difference (d) = a₂-a₁ = 3.5 – 1 = 2.5 ⇒Number of term = (n) = 21 Formula ⇒Sₙ = n/2{2a+(n-1)d} now put the value on formula ⇒S₂₁ = 21/2{2×1+ (21-1)2.5} ⇒S₂₁ = 10.5{2 + 20×2.5} ⇒S₂₁ = 10.5{2+ 50} ⇒S₂₁ = 10.5{52} ⇒S₂₁ = 546 Answer ⇒S₂₁ = 546 , option ‘a’ is correct More Information ⇒a,b,c are in AP ; 2b = a+c , GP ; b²=ac and HP ; b = (2ac)/(a+c) ⇒AM = (a+b)/2 , G= √(ab) and H = (2ab)/(a+b) ⇒A≥G≥H In Equality Based Reply
Given :- An AP 1,3.5,6,8.5 Upto 21 terms To Find :- The sum Solution :- Finding common difference [tex]\sf C.D. = a_2 – a_1[/tex] CD = 3.5 – 1 CD = 2.5 We know that Sₙ = n/2{2a+(n-1)d} [tex]\sf S_{21}=\dfrac{21}{2} \bigg(2 \times 1 + (21 – 1 )2.5\bigg)[/tex] [tex]\sf S_{21}= \dfrac{21}{2} \bigg(2 + (21 – 1) 2.5\bigg)[/tex] [tex]\sf S_{21} = \dfrac{21}{2} \bigg(2 + 20 \times 2.5\bigg)[/tex] [tex]\sf S_{21} = \dfrac{21}{2}\bigg(2 + 50\bigg)[/tex] [tex]\sf S_{21} = \dfrac{21}{2}\times 52[/tex] [tex]\sf S_{21} = 21 \times 26[/tex] [tex]\sf S_{21} = 546 \bigg\lgroup Option \; A \bigg\rgroup[/tex] Reply
Given
⇒First term (a) = 1
⇒Common Difference (d) = a₂-a₁ = 3.5 – 1 = 2.5
⇒Number of term = (n) = 21
Formula
⇒Sₙ = n/2{2a+(n-1)d}
now put the value on formula
⇒S₂₁ = 21/2{2×1+ (21-1)2.5}
⇒S₂₁ = 10.5{2 + 20×2.5}
⇒S₂₁ = 10.5{2+ 50}
⇒S₂₁ = 10.5{52}
⇒S₂₁ = 546
Answer
⇒S₂₁ = 546 , option ‘a’ is correct
More Information
⇒a,b,c are in AP ; 2b = a+c , GP ; b²=ac and HP ; b = (2ac)/(a+c)
⇒AM = (a+b)/2 , G= √(ab) and H = (2ab)/(a+b)
⇒A≥G≥H In Equality Based
Given :-
An AP 1,3.5,6,8.5 Upto 21 terms
To Find :-
The sum
Solution :-
Finding common difference
[tex]\sf C.D. = a_2 – a_1[/tex]
CD = 3.5 – 1
CD = 2.5
We know that
Sₙ = n/2{2a+(n-1)d}
[tex]\sf S_{21}=\dfrac{21}{2} \bigg(2 \times 1 + (21 – 1 )2.5\bigg)[/tex]
[tex]\sf S_{21}= \dfrac{21}{2} \bigg(2 + (21 – 1) 2.5\bigg)[/tex]
[tex]\sf S_{21} = \dfrac{21}{2} \bigg(2 + 20 \times 2.5\bigg)[/tex]
[tex]\sf S_{21} = \dfrac{21}{2}\bigg(2 + 50\bigg)[/tex]
[tex]\sf S_{21} = \dfrac{21}{2}\times 52[/tex]
[tex]\sf S_{21} = 21 \times 26[/tex]
[tex]\sf S_{21} = 546 \bigg\lgroup Option \; A \bigg\rgroup[/tex]