20. Find the co-ordinates of
the point which divides the join
(4,-5) &(6,3) in the ratio 3:5​

20. Find the co-ordinates of
the point which divides the join
(4,-5) &(6,3) in the ratio 3:5​

About the author
Savannah

1 thought on “20. Find the co-ordinates of<br />the point which divides the join<br />(4,-5) &(6,3) in the ratio 3:5​”

  1. Given:-

    Points:-

    • (4, -5)
    • (6, 3)
    • Ratio = 3:5

    To Find:-

    • The co-ordinates of the point which divides the line joining (4, -5) and (6, 3) in the ratio 3:5

    Assumption:-

    • Let the point dividing the line segment be P(x, y)

    Solution:-

    We have:-

    • x₁ = 4
    • x₂ = 6
    • y₁ = -5
    • y₂ = 3
    • m₁ = 3 (antecedent of the ratio)
    • m₂ = 5 (consequent of the ratio)

    We already know:-

    • [tex]\dag{\boxed{\underline{\tt{Section\:Formula =\bigg( \dfrac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \dfrac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\bigg)}}}}[/tex]

    Putting all the values in the formula:-

    [tex]\sf{P(x, y) = \bigg(\dfrac{3 \times 6 + 5 \times 4}{3 + 5}, \dfrac{3 \times 3 + 5 \times (-5)}{3 + 5}\bigg)}[/tex]

    [tex] = \sf{P(x, y) = \bigg(\dfrac{18 + 20}{8}, \dfrac{9 – 25}{8}\bigg)}[/tex]

    [tex] = \sf{P(x, y) = \bigg(\dfrac{38}{8}, \dfrac{16}{8}\bigg)}[/tex]

    [tex] = \sf{P(x, y) = \dfrac{\not{38}}{\not{8}}, \dfrac{\not{16}}{\not{8}}}[/tex]

    [tex] = \sf{P(x, y) = \dfrac{19}{4}, 2}[/tex]

    The coordinates of the point that divides the line segment joining (4, 5) and (6, 3) in the ratio 3:5 are (19/4, 2).

    ______________________________________

    Remember!!!!

    • x₁ = abscissa of the first point
    • x₂ = abscissa of the second point
    • y₁ = ordinate of the first point
    • y₂ = ordinate of the second point
    • m₁ = antecedent of the ratio (i.e. 3:5)
    • m₂ = consequent of the ratio (i.e 3:5)

    ______________________________________

    Reply

Leave a Comment