20. Find the co-ordinates ofthe point which divides the join(4,-5) &(6,3) in the ratio 3:5 About the author Savannah
Given:- Points:- (4, -5) (6, 3) Ratio = 3:5 To Find:- The co-ordinates of the point which divides the line joining (4, -5) and (6, 3) in the ratio 3:5 Assumption:- Let the point dividing the line segment be P(x, y) Solution:- We have:- x₁ = 4 x₂ = 6 y₁ = -5 y₂ = 3 m₁ = 3 (antecedent of the ratio) m₂ = 5 (consequent of the ratio) We already know:- [tex]\dag{\boxed{\underline{\tt{Section\:Formula =\bigg( \dfrac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \dfrac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\bigg)}}}}[/tex] Putting all the values in the formula:- [tex]\sf{P(x, y) = \bigg(\dfrac{3 \times 6 + 5 \times 4}{3 + 5}, \dfrac{3 \times 3 + 5 \times (-5)}{3 + 5}\bigg)}[/tex] [tex] = \sf{P(x, y) = \bigg(\dfrac{18 + 20}{8}, \dfrac{9 – 25}{8}\bigg)}[/tex] [tex] = \sf{P(x, y) = \bigg(\dfrac{38}{8}, \dfrac{16}{8}\bigg)}[/tex] [tex] = \sf{P(x, y) = \dfrac{\not{38}}{\not{8}}, \dfrac{\not{16}}{\not{8}}}[/tex] [tex] = \sf{P(x, y) = \dfrac{19}{4}, 2}[/tex] ∴ The coordinates of the point that divides the line segment joining (4, –5) and (6, 3) in the ratio 3:5 are (19/4, 2). ______________________________________ Remember!!!! x₁ = abscissa of the first point x₂ = abscissa of the second point y₁ = ordinate of the first point y₂ = ordinate of the second point m₁ = antecedent of the ratio (i.e. 3:5) m₂ = consequent of the ratio (i.e 3:5) ______________________________________ Reply
Given:-
Points:-
To Find:-
Assumption:-
Solution:-
We have:-
We already know:-
Putting all the values in the formula:-
[tex]\sf{P(x, y) = \bigg(\dfrac{3 \times 6 + 5 \times 4}{3 + 5}, \dfrac{3 \times 3 + 5 \times (-5)}{3 + 5}\bigg)}[/tex]
[tex] = \sf{P(x, y) = \bigg(\dfrac{18 + 20}{8}, \dfrac{9 – 25}{8}\bigg)}[/tex]
[tex] = \sf{P(x, y) = \bigg(\dfrac{38}{8}, \dfrac{16}{8}\bigg)}[/tex]
[tex] = \sf{P(x, y) = \dfrac{\not{38}}{\not{8}}, \dfrac{\not{16}}{\not{8}}}[/tex]
[tex] = \sf{P(x, y) = \dfrac{19}{4}, 2}[/tex]
∴ The coordinates of the point that divides the line segment joining (4, –5) and (6, 3) in the ratio 3:5 are (19/4, 2).
______________________________________
Remember!!!!
______________________________________