2 – cos2θ = 3sinθcosθ, sinθ ≠ cosθ then tanθ is??
hey ☺❤​

2 – cos2θ = 3sinθcosθ, sinθ ≠ cosθ then tanθ is??
hey ☺❤​

About the author
Charlotte

1 thought on “2 – cos2θ = 3sinθcosθ, sinθ ≠ cosθ then tanθ is??<br />hey ☺❤​”

  1. Given:

    [tex]2-cos2\theta=3sin\theta cos\theta[/tex]

    To find: [tex]tan\theta[/tex]

    Step-by-step explanation:

    Now, [tex]2-cos2\theta=3sin\theta cos\theta[/tex]

    [tex]\Rightarrow 2(sin^{2}\theta+cos^{2}\theta)-(cos^{2}\theta-sin^{2}\theta)=3 sin\theta cos\theta[/tex]

    [tex]\Rightarrow 2sin^{2}\theta+2cos^{2}\theta-cos^{2}\theta+sin^{2}\theta=3 sin\theta cos\theta[/tex]

    [tex]\Rightarrow 3sin^{2}\theta-3 sin\theta cos\theta+cos^{2}\theta=0[/tex]

    [tex]\Rightarrow 3 tan^{2}\theta-3 tan\theta+1=0[/tex] since [tex]cos\theta\neq 0[/tex]

    Using Sridhar Acharya’s formula, we get

    [tex]\quad tan\theta=\frac{3\pm\sqrt{9-12}}{6}[/tex]

    [tex]\Rightarrow tan\theta=\frac{3\pm\sqrt{-3}}{6}[/tex]

    [tex]\Rightarrow tan\theta=\frac{3\pm i\sqrt{3}}{6}[/tex] where [tex]i=\sqrt{-1}[/tex]

    Answer: [tex]tan\theta=\frac{3\pm i\sqrt{3}}{6}[/tex]

    Reply

Leave a Comment