Answer: Given: [tex]sin\,\theta=\frac{a}{b}[/tex] [tex]To \: show: sec\,\theta\+tan\,\theta=\sqrt{\frac{b+a}{b-a}}[/tex] Using Trigonometric identity, [tex]cos\,\theta=\sqrt{1-sin^2\,\theta}[/tex] [tex]cos\,\theta=\sqrt{1-(\frac{a}{b})^2}[/tex] [tex]cos\,\theta=\sqrt{(\frac{b^2-a^2}{b^2}}[/tex] [tex]cos\,\theta=\frac{\sqrt{b^2-a^2}}{b}[/tex] [tex]\implies sec\,\theta=\frac{1}{cos\,\theta}=\frac{b}{\sqrt{b^2-a^2}}[/tex] [tex]\implies tan\,\theta=\frac{sin\,\theta}{cos\,\theta}=\frac{a}{\sqrt{b^2-a^2}}[/tex] Now, [tex]sec\,\theta+tan\,\theta[/tex] [tex] =\frac{b}{\sqrt{b^2-a^2}}+\frac{a}{\sqrt{b^2-a^2}}[/tex] [tex]=\frac{b+a}{\sqrt{(b-a)(b+a)}}[/tex] [tex]=\frac{\sqrt{b+a}\sqrt{b+a}}{\sqrt{b-a}\sqrt{b+a}}[/tex] [tex]=\frac{\sqrt{b+a}}{\sqrt{b-a}}[/tex] [tex]=\sqrt{\frac{b+a}{b-a}}[/tex] Hence Proved Reply
Answer:
Given:
[tex]sin\,\theta=\frac{a}{b}[/tex]
[tex]To \: show: sec\,\theta\+tan\,\theta=\sqrt{\frac{b+a}{b-a}}[/tex]
Using Trigonometric identity,
[tex]cos\,\theta=\sqrt{1-sin^2\,\theta}[/tex]
[tex]cos\,\theta=\sqrt{1-(\frac{a}{b})^2}[/tex]
[tex]cos\,\theta=\sqrt{(\frac{b^2-a^2}{b^2}}[/tex]
[tex]cos\,\theta=\frac{\sqrt{b^2-a^2}}{b}[/tex]
[tex]\implies sec\,\theta=\frac{1}{cos\,\theta}=\frac{b}{\sqrt{b^2-a^2}}[/tex]
[tex]\implies tan\,\theta=\frac{sin\,\theta}{cos\,\theta}=\frac{a}{\sqrt{b^2-a^2}}[/tex]
Now,
[tex]sec\,\theta+tan\,\theta[/tex]
[tex]
=\frac{b}{\sqrt{b^2-a^2}}+\frac{a}{\sqrt{b^2-a^2}}[/tex]
[tex]=\frac{b+a}{\sqrt{(b-a)(b+a)}}[/tex]
[tex]=\frac{\sqrt{b+a}\sqrt{b+a}}{\sqrt{b-a}\sqrt{b+a}}[/tex]
[tex]=\frac{\sqrt{b+a}}{\sqrt{b-a}}[/tex]
[tex]=\sqrt{\frac{b+a}{b-a}}[/tex]
Hence Proved