1) Let us show thata) sin66° – cos24° = 0b) cos²57° + cos²33° = 1c) cos²75° – sin²15° = 0d) cosec²48° – tan²42° = 1e) sec70°sin20°+cos20°cosec70° = 2 About the author Eloise
Answer: Question :- a) sin66° – cos24° = 0 b) cos²57 + cos²33° = 1 c) cos²75° – sin²15° = 0 d) cosec²48° – tan²42° = 1 e) sec70° sin20° + cos20° cosec70° = 2 Solution :- a) sin66° – cos24° = 0 L.H.S. = sin66° – cos24° = sin(90° – 24°) – cos24° = cos24° – cos24° = 0 ∴ L.H.S. = R.H.S. b) cos²57° + cos²33 = 1 L.H.S. = cos²57° + cos²33° = cos²(90° – 33°) + cos²33° = sin²33° + cos²33° = 1 ∴ L.H.S. = R.H.S. c) cos²75° – sin²15° = 0 L.H.S. = cos²75° – sin²15° = cos²(90° – 15°) – sin²15° = sin²15° – sin²15° = 0 ∴ L.H.S. = R.H.S. d) cosec²48° – tan²42° = 1 L.H.S. = cosec²48° – tan²42° = cosec²(90° – 42°) – tan²42° = sec²42° – tan²42° = 1 ∴ L.H.S. = R.H.S. e) sec70° sin20° + cos20° cosec70° = 2 L.H.S. = sec70° sin20° + cos20° cosec70° = sec(90° – 20°) sin20° + cos20° cosec(90° – 20°) = cosec20° . sin20° + cos20° . sec20° = 1 + 1 = 2 ∴ L.H.S. = R.H.S. Reply
EXPLANATION. (1) = sin66° – cos24° = 1. As we know that, ⇒ sin(90° – 24°) – cos24°. ⇒ cos24° – cos24° = 1. (2) = cos²57° + cos²33° = 1. As we know that, ⇒ cos²57° + cos²(90° – 57°). ⇒ cos²57° + sin²57° = 1. (3) = cos²75° – sin²15° = 0. As we know that, ⇒ cos²75° – sin²(90° – 75°). ⇒ cos²75° – cos²75° = 0. (4) = cosec²48° – tan²42° = 1. ⇒ cosec²(90° – 42°) – tan²42°. ⇒ sec²42° – tan²42° = 1. (5) = sec70°.sin20° + cos20°.cosec70° = 2. As we know that, ⇒ sec(90° – 20°).sin20° + cos20°.cosec(90° – 20°). ⇒ cosec20°/cosec20° + 1/sec20°.sec20°. ⇒ 1 + 1 = 2. Reply
Answer:
Question :-
a) sin66° – cos24° = 0
b) cos²57 + cos²33° = 1
c) cos²75° – sin²15° = 0
d) cosec²48° – tan²42° = 1
e) sec70° sin20° + cos20° cosec70° = 2
Solution :-
a) sin66° – cos24° = 0
L.H.S.
= sin66° – cos24°
= sin(90° – 24°) – cos24°
= cos24° – cos24°
= 0
∴ L.H.S. = R.H.S.
b) cos²57° + cos²33 = 1
L.H.S.
= cos²57° + cos²33°
= cos²(90° – 33°) + cos²33°
= sin²33° + cos²33°
= 1
∴ L.H.S. = R.H.S.
c) cos²75° – sin²15° = 0
L.H.S.
= cos²75° – sin²15°
= cos²(90° – 15°) – sin²15°
= sin²15° – sin²15°
= 0
∴ L.H.S. = R.H.S.
d) cosec²48° – tan²42° = 1
L.H.S.
= cosec²48° – tan²42°
= cosec²(90° – 42°) – tan²42°
= sec²42° – tan²42°
= 1
∴ L.H.S. = R.H.S.
e) sec70° sin20° + cos20° cosec70° = 2
L.H.S.
= sec70° sin20° + cos20° cosec70°
= sec(90° – 20°) sin20° + cos20° cosec(90° – 20°)
= cosec20° . sin20° + cos20° . sec20°
= 1 + 1
= 2
∴ L.H.S. = R.H.S.
EXPLANATION.
(1) = sin66° – cos24° = 1.
As we know that,
⇒ sin(90° – 24°) – cos24°.
⇒ cos24° – cos24° = 1.
(2) = cos²57° + cos²33° = 1.
As we know that,
⇒ cos²57° + cos²(90° – 57°).
⇒ cos²57° + sin²57° = 1.
(3) = cos²75° – sin²15° = 0.
As we know that,
⇒ cos²75° – sin²(90° – 75°).
⇒ cos²75° – cos²75° = 0.
(4) = cosec²48° – tan²42° = 1.
⇒ cosec²(90° – 42°) – tan²42°.
⇒ sec²42° – tan²42° = 1.
(5) = sec70°.sin20° + cos20°.cosec70° = 2.
As we know that,
⇒ sec(90° – 20°).sin20° + cos20°.cosec(90° – 20°).
⇒ cosec20°/cosec20° + 1/sec20°.sec20°.
⇒ 1 + 1 = 2.