Answer: Given equation of circle is x 2 +y 2 −6x+4y−12=0 ⟹x 2 −6x+y 2 +4y−12=0 ⟹x 2 −2(x)(3)+(3) 2 −(3) 2 +y 2 +2(y)(2)+(2) 2 −(2) 2 −12=0 ⟹(x−3) 2 −9+(y+2) 2 −4−12=0 ⟹(x−3) 2 +(y+2) 2 =5 2 Let X=x−3,Y=y+2 ⟹X 2 +Y 2 =5 2 This is in the form of x 2 +y 2 =a 2 which as parametric equations as x=acosθ,y=asinθ ⟹X=5cosθ,Y=5sinθ ⟹x−3=5cosθ,y+2=5sinθ ⟹x=3+5cosθ,y=−2+5sinθ Reply
Answer: Step-by-step explanation: Given, [tex]\sf x^2+y^2-6x+4y-3=0[/tex] To Find :- Parametric Equation of the circle Solution :- [tex]\sf x^2+y^2-6x+4y-3=0[/tex] [tex]\sf x^2-6x+y^2+4y-3=0[/tex] [tex]\sf x^2-2(x)(3)+(3)^2-(3)^2+y^2+2(y)(2)+(2)^2-(2)^2-3=0[/tex] [tex]\sf (x-3)^2+(y+2)^2-9-4-3=0[/tex] [tex]\sf (x-3)^2+(y-2)^2-16=0[/tex] [tex]\sf (x-3)^2+(y-2)^2=16[/tex] [tex](x-3)^2+(y-2)^2=4^2[/tex] Let , X = x – 3 , Y = y – 2 [tex]\sf \implies X^2+Y^2=4^2[/tex] This above equation in the form of ” x^2 + y^2 = a^2″ :- Where :- [tex]\sf x=acos\theta,y=asin\theta[/tex] [tex]\sf \implies X = 4cos\theta , Y = 4sin\theta[/tex] [tex]x-3=4cos\theta,y-2=4sin\theta[/tex] [tex]x=4cos\theta+3,y=4sin\theta+2[/tex] Reply
Answer:
Given equation of circle is x
2
+y
2
−6x+4y−12=0
⟹x
2
−6x+y
2
+4y−12=0
⟹x
2
−2(x)(3)+(3)
2
−(3)
2
+y
2
+2(y)(2)+(2)
2
−(2)
2
−12=0
⟹(x−3)
2
−9+(y+2)
2
−4−12=0
⟹(x−3)
2
+(y+2)
2
=5
2
Let X=x−3,Y=y+2
⟹X
2
+Y
2
=5
2
This is in the form of x
2
+y
2
=a
2
which as parametric equations as x=acosθ,y=asinθ
⟹X=5cosθ,Y=5sinθ
⟹x−3=5cosθ,y+2=5sinθ
⟹x=3+5cosθ,y=−2+5sinθ
Answer:
Step-by-step explanation:
Given,
[tex]\sf x^2+y^2-6x+4y-3=0[/tex]
To Find :-
Parametric Equation of the circle
Solution :-
[tex]\sf x^2+y^2-6x+4y-3=0[/tex]
[tex]\sf x^2-6x+y^2+4y-3=0[/tex]
[tex]\sf x^2-2(x)(3)+(3)^2-(3)^2+y^2+2(y)(2)+(2)^2-(2)^2-3=0[/tex]
[tex]\sf (x-3)^2+(y+2)^2-9-4-3=0[/tex]
[tex]\sf (x-3)^2+(y-2)^2-16=0[/tex]
[tex]\sf (x-3)^2+(y-2)^2=16[/tex]
[tex](x-3)^2+(y-2)^2=4^2[/tex]
Let ,
X = x – 3 , Y = y – 2
[tex]\sf \implies X^2+Y^2=4^2[/tex]
This above equation in the form of ” x^2 + y^2 = a^2″ :-
Where :-
[tex]\sf x=acos\theta,y=asin\theta[/tex]
[tex]\sf \implies X = 4cos\theta , Y = 4sin\theta[/tex]
[tex]x-3=4cos\theta,y-2=4sin\theta[/tex]
[tex]x=4cos\theta+3,y=4sin\theta+2[/tex]