,
1 Find the parametric equation of the Circle
x2 + y2 – 6x + 4y – 3 = 0 ​

,
1 Find the parametric equation of the Circle
x2 + y2 – 6x + 4y – 3 = 0 ​

About the author
Autumn

2 thoughts on “,<br />1 Find the parametric equation of the Circle<br />x2 + y2 – 6x + 4y – 3 = 0 ​”

  1. Answer:

    Given equation of circle is x

    2

    +y

    2

    −6x+4y−12=0

    ⟹x

    2

    −6x+y

    2

    +4y−12=0

    ⟹x

    2

    −2(x)(3)+(3)

    2

    −(3)

    2

    +y

    2

    +2(y)(2)+(2)

    2

    −(2)

    2

    −12=0

    ⟹(x−3)

    2

    −9+(y+2)

    2

    −4−12=0

    ⟹(x−3)

    2

    +(y+2)

    2

    =5

    2

    Let X=x−3,Y=y+2

    ⟹X

    2

    +Y

    2

    =5

    2

    This is in the form of x

    2

    +y

    2

    =a

    2

    which as parametric equations as x=acosθ,y=asinθ

    ⟹X=5cosθ,Y=5sinθ

    ⟹x−3=5cosθ,y+2=5sinθ

    ⟹x=3+5cosθ,y=−2+5sinθ

    Reply
  2. Answer:

    Step-by-step explanation:

    Given,

    [tex]\sf x^2+y^2-6x+4y-3=0[/tex]

    To Find :-

    Parametric Equation of the circle

    Solution :-

    [tex]\sf x^2+y^2-6x+4y-3=0[/tex]

    [tex]\sf x^2-6x+y^2+4y-3=0[/tex]

    [tex]\sf x^2-2(x)(3)+(3)^2-(3)^2+y^2+2(y)(2)+(2)^2-(2)^2-3=0[/tex]

    [tex]\sf (x-3)^2+(y+2)^2-9-4-3=0[/tex]

    [tex]\sf (x-3)^2+(y-2)^2-16=0[/tex]

    [tex]\sf (x-3)^2+(y-2)^2=16[/tex]

    [tex](x-3)^2+(y-2)^2=4^2[/tex]

    Let ,

    X = x – 3 , Y = y – 2

    [tex]\sf \implies X^2+Y^2=4^2[/tex]

    This above equation in the form of ” x^2 + y^2 = a^2″ :-

    Where :-

    [tex]\sf x=acos\theta,y=asin\theta[/tex]

    [tex]\sf \implies X = 4cos\theta , Y = 4sin\theta[/tex]

    [tex]x-3=4cos\theta,y-2=4sin\theta[/tex]

    [tex]x=4cos\theta+3,y=4sin\theta+2[/tex]

    Reply

Leave a Comment